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Abstract

In this diploma thesis, we research whether the inclusion of information about an in-
formation user’s social environment and his position in the social network of his peers
leads to an improval in search effectiveness.

Traditional information retrieval methods fail to address the fact that information pro-
duction and consumption are social activities. We ameliorate this problem by extending
the domain model of information retrieval to include social networks.

We describe two different techniques for information retrieval in such an enviroment.
We evaluate these techniques in comparison to vector space retrieval.
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Chapter 1

Introduction

The goal of information retrieval (ir) is facilitating a user’s access to information
that is relevant to his information needs. According to Baeza-Yates and Ribeiro-Neto
(1999), an information retrieval system ‘should provide the user with easy access to the
information in which he is interested.’ Earlier definitions took a narrower and more
technical view on the purpose of a retrieval system, for example Lancaster (1968): ‘An
information retrieval system does not inform (i. e. change the knowledge of) the user on
the subject of his inquiry. It merely informs on the existence (or non-existence) and
whereabouts of documents relating to his request.’, or Frakes and Baeza-Yates (1992):
‘An ir system matches user queries – formal statements of information needs – to doc-
uments stored in a database.’ Manber (1992) traces the history of information retrieval
back to the first Sumerian literary catalogues, about four thousand years ago.

An information retrieval system must first determine the exact nature of the user’s
information needs, then select a subset of documents that help him satisfy his informa-
tion need, and finally rank the selected documents according to which documents are
most likely to provide a satisfactory answer.

1.1 Information Retrieval and the Social Realm

Wilson (1981) notes that both the user’s information needs and his strategies for satis-
fying them are influenced by the socio-cultural environment, since they arise in social
situations. Wenger (1996) introduced the idea of the ‘community of practice’: the no-
tion that person can satisfy his information needs more efficiently if he is embedded in
a community of practitioners with similar interests and problems. Indeed, before the
advent of modern information retrieval systems, most information needs were satisfied
by social means: by asking friends and acquaintances, by going to the library and asking
the librarian for help, or by enquiring at specialized agencies.

Although the amount of information available in automated retrieval systems is far
greater than can be acquired from other people, information that comes from immediate
contacts is usually preferable to information obtained from anonymous sources: Since
the provider is known, it is easier to assess the quality of the information. Here, quality
has several different aspects; the first and foremost is factual accuracy. But there are

1



Chapter 1 Introduction

also secondary aspects, for example the provider’s subjective evaluation, the ability
to further discuss the topic with the provider, and obtain references to other relevant
pieces of information. Only when one’s immediate contacts are not able to satisfy the
information need or more in-depth information about a topic is required, one turns
to secondary sources – equipped with the information acquired by asking within the
community.

Information retrieval meets the social realm at another, more subtle point: Infor-
mation is also produced in social situations. Few authors work in a social vacuum.
Participation in the community and active exchange with like-minded persons fosters
information production and improves the quality of the work.

Granovetter (1973) notes that ‘weak ties’ – ties between acquaintances rather than be-
tween close friends or family – are particularly important for information dissemination
and diffusion: Weak ties allow information to spread from one closely-knit community to
another. Individuals with many weak ties – ‘hubs’ in the social network – are important
for the adoption of new ideas, since their authority is accepted by a large number of
immediate acquaintances.

We conclude that social networks are an important factor for finding and spread-
ing information, and that an individual’s position in the social network of his peers is
indicative of his authority and influence. Accordingly, we define social information
retrieval as the incorporation of information about social networks and relationships
into the information retrieval process.

1.2 The Internet: A Social Medium?

With the increasing use of electronic communications media, viz. the Internet, social
ties and the structure of the social network become tractable. This section outlines some
examples of online networks where data about social ties between users is available, in
addition to similarity data or references between documents and information about au-
thorship. In such a setting, incorporating social information into the retrieval process
is an obvious next step: Since both information usage and information production oc-
cur in social environments, both are influenced by the social network of the user and
the author. Knowledge of these networks affects all parts of the information retrieval
problem.

1.2.1 Scientific Community

Social network analysis in the scientific community has a long tradition. Through the
use of bibliometric measures such as co-citation coupling and bibliographic coupling,
the network structure of scientific publications and the publications they cite can be
assessed.

2



Chapter 1 Introduction

A famous anecdotal application of network analysis in the natural sciences is a person’s
Erdős number1: The minimum length of a path in the co-authorship network between
the Hungarian mathematician Paul Erdős and a given person.

Network analysis in the scientific community is usually conducted on the basis of
publications in well-known journals or conference proceedings, as well as the cited pub-
lications. These documents usually do not capture the full extent of social relationships
between authors, since much communication occurs via secondary channels, such as
email. The observable content is of very high quality.

A number of databases of scientific publications exist, for example MathSciNet2,
PubMed3 and CiteSeer4. Some databases, most notably CiteSeer, support download
of records via the Open Archive Initiative Protocol for Metadata Harvesting5, making
social retrieval on scientific publications possible.

A corpus with data from 25 years of sigir proceedings, stemming from work on
(Smeaton et al., 2002) and enhanced locally, is used for evaluation in subsequent chap-
ters.

1.2.2 Wikis

Wikis are a form of collaborative authoring environment that is characterized by the
fact that every user can add, edit, and delete content at will. The first wiki was Wiki-
WikiWeb6, launched by Ward Cunningham in 1995 as a supplement to the Portland
Pattern Repository, a web site about software design patterns. A number of software
packages and similar projects followed; the largest wiki is purported to be Wikipedia7,
an online encyclopedia that employs the wiki principles.

Wikis usually have a flat structure, with one designated entry page that links to other
pages; some use fixed number of categories. Most wikis keep a revision history that
allows changes to be linked to individual users. Direct interaction between users usually
occurs on the user’s home page.

The quality of published content varies wildly; some wikis contain nothing more than
a few quickly written ideas, others, like Wikipedia, aim for publication-quality content.

1.2.3 Blogs

Weblogs or ‘blogs’ are an internet phenomenon originating in the late 1990s: Websites
that continually publish new articles on their front page, written by one individual or

1http://www.oakland.edu/enp/, last visit on 2005/03/08.
2http://www.ams.org/mathscinet, last visit on 2005/03/08.
3http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed, last visit on 2005/03/08.
4http://citeseer.ist.psu.edu/, last visit on 2005/03/08.
5http://www.openarchives.org/OAI/openarchivesprotocol.html, last visit on 2005/05/02.
6http://c2.com/cgi/wiki?WikiWikiWeb, last visit on 2005/03/08.
7http://www.wikipedia.org/, last visit on 2005/08/03.
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Chapter 1 Introduction

a group of people. Blog entries can be tied to their author; linking between entries is
supported in the form of comments or so-called ‘trackback links’, in which the author
of another blog refers in his entry to the original entry.

Blogs can take many forms: personal blogs usually form a sort of diary of the owner’s
thoughts and interests. Topical blogs are usually edited by several people and publish
information about a specific topic. Corporate blogs may give the executives and other
employees a platform for publishing news articles. A number of service provides exist
on the internet that allow one to create a blog free of charge; examples are BlogSpot8

(now owned by Google) and LiveJournal9.
Another typical feature is the so-called blogroll: A list of other blogs the author reads

regularly. This may be used to determine social links between authors, but it is not
universally adopted.

1.2.4 Messenging Systems

There are a number of messenging systems that are sufficiently similar to each other
to be grouped under one heading; examples are email mailing lists, Usenet, and web
forums. These systems are among the oldest collaborative electronic mediums; however,
as articles are often written ‘off the cuff’ and cannot be revised, they are often lacking in
quality. Mailing list archives can be a valuable repository of knowledge, but separating
the wheat from the chaff is notoriously difficult.

Messenging systems are usually characterized by a tree structure of links between
individual documents. A further speciality is that the polarity of the link structure is
unclear: A follow-up article is often not a sign of support, but a sign of disagreement or
a sign that the original article is lacking information.

1.2.5 ISKODOR: Congenial Web Search

iskodor10 is an experimental system developed at the University of Bonn. The stated
goal of the project is the implementation of ‘congenial web search’ (Gnasa et al., 2004)
– meaning a user-centred approach where search quality is constantly evaluated through
explicit feedback.

The functional prototype of iskodor employs a peer-to-peer architecture in order to
share search results with other users. Thus, a single point of failure or bottlenecks are
avoided. The user’s faith in the service is strenghened, as he himself controls which
information is stored and disseminated about him.

iskodor implements personalized ranking matrices; collaborative information re-
trieval is implemented in the form of peer groups, which are used to limit the scope
of a search (Gnasa et al., 2003).

8http://www.blogspot.com/, last visit on 2005/03/09.
9http://www.livejournal.com/, last visit on 2005/03/09.

10iskodor is an acronym for ‘Is Sharing Knowledge Online a Dream Or Reality?’
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An iskodor peer can keep track of the quality of the results provided by its peers and
re-rank results according to the peer that supplied it. This ‘peer relevance’ judgement
leads to a network of trusted peers that produce the most relevant results.

Social search techniques can be applied in this network of trusted peers, to provide
better search results and find peers that are well versed in a specific topic. Thus, social
information retrieval can be used to improve web search effectiveness.

1.2.6 Semantic Web

Semantic Web (Berners-Lee et al., 2001) is a loosely-defined term for exchanging infor-
mation on the world wide web, characterized by the information being in a format with
precise semantics. In the current incarnation, as developed by the Semantic Web work-
ing group11 of the World Wide Web Consortium12, it is built on xml as the underlying
markup language and data exchange format, and rdf and owl as knowledge represen-
tation languages. Standardized ontologies, expressed in the knowledge representation
languages, allow the description of entities and their relations.

The Semantic Web allows for the inclusion of precise information about documents on
the web, their authors, and relations between individuals. The Dublin Core Metadata
Element Set13 contains a set of attributes for documents, such as authorship, title or
publication date. Similarly, the Friend of a Friend (foaf) project14 published a standard
for machine-readable information about individuals, their relations to others, and their
activities. Together, these standards allow for the automated extraction of authorship
information and social information. OpenSearch15 is a standard for describing search
engines and their query formats, and for returning result lists in a machine-readable
format.

1.3 Paving the Way: Personalized and Collaborative
Information Retrieval

In conventional information retrieval systems, all of the user’s information needs are
embodied in a query, a short string of key words or a question. Further indicators of
the user’s general information needs are not taken into account, such as his previous
searches or his web sites of interest. Indeed, a query with one or two keywords is much
too short to contain a complete picture of a user’s needs. A search engine is therefore
susceptible to a form of tyranny of the majority: It can only display those sites that

11http://www.w3.org/2001/sw/, last visit on 2005/08/30.
12http://www.w3.org, last visit on 2005/08/30.
13http://dublincore.org/, last visit on 2005/08/30.
14http://www.foaf-project.org/, last visit on 2005/08/30.
15http://opensearch.a9.com/, last visit on 2005/08/30.
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will be relevant to the majority of its users, but not to the actual user who submitted a
query.

Personalization seeks to solve this problem by keeping a record of the user’s previous
activity and using it to attune the results to his profile. Implementations of personalized
search exist, but are not yet in widespread use; examples are Amazon’s a9.com16 and
Eurekster17, which are implemented as a central service, or SearchPad (Bharat, 2000),
a client application.

A collaborative element can be added by comparing and combining the profiles of
different users. This approach is popular in information filtering systems such as the
GroupLens system (Konstan et al., 1997) for filtering Usenet posts. It has also been used
in information retrieval systems, for example in the aforementioned Eurekster system,
or the experimental I-Spy18 search engine (Freyne and Smyth, 2004).

Personalization strategies and collaborative retrieval attack the problem of determin-
ing a user’s information needs from different angles. Personalization aims to infer a
more detailed view of the information needs based on past usage, whereas collaborative
ranking acknowledges that the information seeker is part of a community of like-minded
individuals.

1.4 Social Retrieval and the World Wide Web

Much if not most of the current research in information retrieval is focused on searching
the World Wide Web, a topic that at the same time presents inherent obstacles (due to
its size and its lack of structure) and great promises (due to the amount of information
that is publicly available.) Extracting the most relevant pages from 8 billion web pages19

is a daunting task, especially if all information about the desired results is condensed to
one or two keywords. (Silverstein et al. (1999) give an average length of 2.35 keywords
for their analysis of AltaVista query logs.) During the evolution of internet search
engines, it quickly became apparent that this problem cannot be solved by relying
only on automatic evaluation of a web page’s content, but needs some sort of human
assessment of a page’s relevance.

Early attempts to build a manual index of web pages, selected by human editors,
(so-called ‘web catalogues’) were largely unsuccessful – because of the sheer size of the
web and the limited manpower of the companies. Most major web portals still provide
some kind of directory, for example the Google Directory20 or the Yahoo! Directory21,
or use data from the Open Directory Project22. However, the focus for navigating the
16http://www.a9.com, last visit on 2005/04/11.
17http://eurekster.com, last visit on 2005/04/11.
18http://ispy.ucd.ie/, last visit on 2005/04/15.
19According to their front page, the Google search engine indexes 8,058,044,651 as of 2005/04/14.
20http://www.google.com/dirhp, last visit on 2005/05/08.
21http://dir.yahoo.com/, last visit on 2005/05/08.
22http://www.dmoz.org/, last visit on 2005/05/08.
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Chapter 1 Introduction

web has been on automated information retrieval, not manual indexes, for several years.
Recent efforts in collaborative projects have shown that it is possible to garner a large,

active user community, in the tens of thousands or even millions of users, within a few
months. Projects such as Wikipedia23 show that large undertakings purely on the basis
of volunteer labour are possible. In this sense, PageRank (Page et al., 1999) is also a
collaborative effort in information retrieval and ranking, since it uses link information
published on millions of web pages.

These examples motivate a vision for the future of web search that is not dominated
by centralistic efforts of single companies, providing us with results derived from a global
view of the web. One may envision a service that provides each user with results that are
tailored to his individual information needs, and that derives its results by collaborating
with other users, sharing information and relevance assessments. Such a tool would be
an ideal application for social information retrieval, since it combines the social network
with the wealth of information available on the World Wide Web.

1.5 Research Contribution

This thesis defines the social information retrieval task and describes its domain. A
formalization on the basis of associative networks is provided, as well as search proce-
dures for these networks. An evaluation compares the described methods to conventional
information retrieval methods.

1.6 Outline of the Thesis

The remaining part of this diploma thesis is structured as follows:

Chapter 2 introduces typographical conventions and key terminology.

Chapter 3 describes the state of the art in information retrieval and related fields.

Chapter 4 lists related work.

Chapter 5 defines social information retrieval in terms of a domain model and require-
ments for a system implementing this model.

Chapter 6 describes two algorithms implemented on the domain model which realize
social ir.

Chapter 7 evaluates the described algorithms.

Chapter 8 contains notes on the implementation of the prototype system used for eval-
uation of the algorithms.

23http://www.wikipedia.org/, last visit on 2005/04/08.
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Chapter 9 concludes the thesis by discussing its impact and limitations of the described
methods, and listing future work.
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Chapter 2

Notation and Terminology

This chapter introduces notation and typographical conventions used in later chapters.
It defines key terminology for describing graphs.

2.1 Notation

Vectors are denoted by bold lowercase letters: v ∈ Rn is a vector in the vector space
Rn. The components of a vector are denoted by a subscript: v = (v1, . . . , vn). Matrices
are denoted by uppercase letters: M ∈ Mm×n(R) is a matrix with m rows and n

columns, where the components are real numbers. (M)ij denoted the component in row
i and column j of matrix M. 1 denotes a matrix of appropriate dimensions where every
component is equal to 1: (1)ij ≡ 1.

For variables which change over time, the time is denoted by a superscript: xt is the
value of x at time t.

For a set of values x1, . . . , xl, the average of the values is x.

2.2 Terminology

A graph G = (V, E) consists of a finite set of nodes (or vertices) V and a set of
edges E connecting the nodes. An edge is either directed, in which case it is a tuple
(v, v ′) ∈ V ×V , or undirected, in which case it is a set {v, v ′} ∈ 2V . A graph which has
only directed edges is called a directed graph, a graph with only undirected edges is
an undirected graph.

The underlying undirected graph of a directed graph is a graph G ′ = (V, E ′) with

E ′ =
{{

v, v ′
}

| (v, v ′) ∈ E ∨ (v ′, v) ∈ E
}

The degree δ of a node in an undirected graph is the number of edges containing the
node:

δ(v) = |{e ∈ E | v ∈ e}|

For directed graphs, we distinguish between the indegree δ−, which is the number of
edges terminating in a node, and the outdegree δ+, the number of edges emanating from

9
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a node:

δ−(v) =
∣∣{(v ′, v ′′) ∈ E | v ′′ = v

}∣∣
δ+(v) =

∣∣{(v ′, v ′′) ∈ E | v ′ = v
}∣∣

A path between two nodes v and v ′ is a sequence of nodes v0, . . . , vk with v0 = v and
vk = v ′, such that (vi, vi+1) ∈ E (in the directed case) respectively {vi, vi+1} ∈ E (in the
undirected case) for 0 ≤ i < k. The length of the path is k; there is a trivial path from
v to v with length 0 for every node. The distance of two nodes v and v ′ is the minimal
length of a path connecting them.

A graph G ′ = (V ′, E ′) is a subgraph of G = (V, E), if V ′ ⊆ V and E ′ ⊆ E. The
induced subgraph G[V ′] is the graph

G[V ′] = (V ′, E ∩ (V ′ × V ′))

respectively
G[V ′] = (V ′, E ∩ 2V ′

)

An undirected graph G is connected if there exists a path in G from v to v ′ for every
pair of nodes in V . A connected component of an undirected graph is a maximal
subgraph G ′ = (V ′, E ′) such that G ′ is connected.

A directed graph G is strongly connected if there exists a path in G from v to v ′ and a
path from v ′ to v for every pair of nodes in V . A strongly connected component of a
directed graph is a maximal subgraph G ′ = (V ′, E ′) such that G ′ is strongly connected.
A subgraph G ′ = (V ′, E ′) is a weak component of a directed graph if the underlying
undirected graph of G ′ is a connected component of the underlying undirected graph of
G.

A graph is weighted if there is a weight ce ∈ R associated every edge e ∈ E.
For a graph with a set of nodes V = {v1, . . . , vn}, we often write eij for the edge from

vi to vj; likewise, cij is the weight associated with eij. The adjacency matrix is the
matrix A ∈ M|V |×|V |(R) with

(A)ij =

{
1 if eij ∈ E

0 otherwise

For a weighted graph, the adjacency matrix is

(A)ij =

{
cij if eij ∈ E

0 otherwise

For an undirected graph, the adjacency matrix is symmetric.
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Chapter 3

State of the Art

This thesis draws its techniques and inspiration from a number of different sources, and
tries to acknowledge current and emerging trends in information retrieval and related
fields.

This chapter contains an introduction to fundamental information retrieval techniques.
It reviews other approaches to personalized and collaborative ir. Techniques from so-
cial network analysis for characterizing large graphs are described, which are used for
comparing social networks with other networks in later chapters. Associative networks
as a means of knowledge representation are discussed, as well as search techniques for
such networks. Evaluation metrics describe the performance of an ir method and are
used for comparison with other methods.

3.1 Information Retrieval Models

The domain of an information retrieval system is a set of index items D, typically a
set of documents. Each index item d ∈ D is represented by a set of indexing features
{ti, . . . , tj} ⊂ T ; T is the set of all indexing features. Indexing features are typically index
terms or keywords extracted from text documents. A weight function weight : D×T → R
determines the weight of a feature T as regards an item d.

The user information needs are represented by a query q from a set of possible queries
Q. For a query q, an information retrieval system produces a set of relevant documents
Dq ⊆ D. A ranking function rank : Dq → {1, . . . , |Dq|} defines an ordering among the
relevant documents for a specific query.

There are several equivalent representations of the relation between terms and docu-
ments, as shown in figure 3.1. A document-term matrix is a matrix M ∈ M|D|×|T |(R)

with |D| rows and |T | columns, with (M)ij = 1 if the document di contains the term
tj, and 0 otherwise. A term list enumerates for each document the terms contained in
it. An inverted index lists for each term the documents containing it. The associative
network view represents the document-term space as a bipartite graph G = (D ] T, E),
with nodes representing terms and documents. An edge edt exists between a document
d and a term t if the document contains the term.

11
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t1 t2 t3 t4 t5

d1 0 0 1 1 0

d2 0 1 0 1 0

d3 1 1 0 0 1
(a) document-term matrix
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(b) term lists
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(d) associative network

Figure 3.1: Different views of the document-term space (examples reproduced from
Preece, 1981, page 11)

3.1.1 The Vector Space Model

In the vector space model, documents and queries are represented by vectors in
the term vector space TVS = R|T |. A document d is assigned a document vector
d = (weight(d, t1), . . . , weight(d, t|T |)) ∈ TVS; query vectors are assigned to queries
likewise. The weight function weight is defined to be non-negative.

Since documents and queries share the same representation, the rank of a document
d as regards a query q is determined by the similarity between document and query
sim(d, q). A popular similarity function is the cosine of the angle between the query
vector and the document vector:

sim(d, q) = cos ∠(d,q) =
d · q

‖d‖ · ‖q‖

Different weighting functions have been proposed for weighting of features in queries
and documents, see for example (Salton and Buckley, 1988b). A popular choice is the
tf · idf weighting scheme

weighttf · idf(d, t) = tf(t, d) · idf(t)

where the term frequency tf(t, d) is the number of times the indexing feature t occurs
in the document d. idf(t) is the inverse document frequency

idf(t) =
1

log(df(t)) + 1
,
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where df(t) is the number of documents the feature t occurs in. The tf · idf scheme
expresses that idea that an index feature is more important for characterizing a document
if it occurs often in the document, but seldom in the document collection.

The vector space model with tf · idf weighting or one of its variations is currently
the most popular model in commercial and other information retrieval applications.
It provides implicit ranking through the similarity measure, it is reasonably fast to
implement, and it provides support for partial matches. Despite its simple design, it
exhibits a consistently high performance.

Since documents and queries are represented as vectors in the same vector space, this
model lends itself easily to techniques for relevance feedback and query expansion.

A recent development in vector space retrieval is latent semantic indexing, or lsi
(Deerwester et al., 1990). Latent semantic indexing aims to compress the term vector
space into a lower-dimensional space by means of singular value decomposition of the
document-term matrix. By projecting the term vector space onto a lower-dimensional
space, associations between terms become apparent. lsi is designed to handle the syn-
onymy problem: Authors use different words for the same concept, but searchers usually
use just one term in the query formulation. lsi retrieves documents relevant to the query
concept even if the query keywords are not present in the document, thus improving the
number of relevant documents found.

3.1.2 Associative Retrieval

Associative retrieval treats documents and terms as nodes in an associative network.
The network can contain document-term, term-term and document-document associa-
tions. This model is called ‘neural network model’ by Baeza-Yates and Ribeiro-Neto
(1999). The associative network is usually searched by the means of techniques from
semantic networks, namely spreading activation search. (Search in associative networks
is described in detail in section 3.6.)

Term-term associations can be determined by statistical measures, for example term
co-occurrence; document-document associations can also be computed in terms of the
overlap of their vocabulary. Salton (1963) suggested using bibliographic coupling (the
number of citations shared by two documents) as an association measure for documents.
Links in hypertext environments can also be used as associations in an associative net-
work (Crestani and Lee, 2000).

Preece (1981) conducted an extensive study and concluded that several other infor-
mation retrieval models (for example the vector space model, the boolean model, and
relevance feedback mechanisms) can be simulated with associative retrieval techniques.

Salton and Buckley (1988a) evaluated a simple associative retrieval model in an exper-
imental setting and concluded that its performance was similar to vector space methods.

Associative Retrieval is an attractive model since it allows one to model associations
between nodes in a natural way. Integration of dissimilar node types and several types
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of associations between nodes is easily achieved; for an example see (Pirolli et al., 1996).

3.1.3 Hypertext Retrieval

Information retrieval in a hyperlinked environment and especially in the world wide web
(www) presents challenges not met by conventional information retrieval methods. The
www (Berners-Lee et al., 1994) is an extremely large, highly distributed collection of
semi-structured hypertext. One of the biggest challenges in web retrieval is not finding
pages that meet the user’s information needs – for many queries, there will be millions
of pages that contain all or some of the query words. The challenge is finding pages of
high quality and ranking them accordingly. Kleinberg (1999) calls this the ‘abundance
problem’ of the www.

Hyperlinked environments are usually described as a graph G = (D, E). An edge
exists from document d to document d ′ if d contains a hyperlink pointing to d ′. In the
case of the world wide web, we call this graph the web graph.

Most algorithms for web retrieval analyse the links between individual web pages. The
simplest form of link analysis measures the popularity of a page by the number of links
pointing to it. More advanced algorithms rely on spectral properties of the adjacency
matrix of the web graph or derived matrices. The idea of using linear algebra methods
for measuring the importance of a document based on its references goes back to Pinski
and Narin (1976).

One of the earliest algorithms for link analysis in the web is the hits (hypertext
induced topic search) algorithm (Kleinberg, 1999). hits operates on a subgraph of
the web that is focused on a particular topic; such a subgraph is usually produced by
querying an existing web search engine on a specific topic and following the outbound
links from the top 200 result pages. The algorithm then produces ‘hub’ and ‘authority’
scores for the focused subgraph: It assigns scores to the pages according to whether
they are an authoritative source for the given topic (and linked to by many hub pages),
or whether they are an information hub (and links to many authoritative pages.) The
hub and authority scores can be seen as a rank one approximation of the web pages’
bibliographic coupling matrix AA> and co-citation coupling matrix A>A (Flake et al.,
2004).

A survey of algorithms for measuring the importance of a node in a network is found
in (White and Smyth, 2003); the most popular algorithm, the PageRank algorithm, is
described in detail in the next section.

3.2 Link Analysis with PageRank

PageRank (Page et al., 1999) is one of the most well-known algorithms for link analysis;
it was popularized by its inclusion into the successful web search engine Google1.

1http://www.google.com/corporate/tech.html, last visit on 2005/08/19.
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The PageRank algorithm is usually formulated based on a random surfer model: A
user starts on a random web page and follows one outlink of this page at random and
repeats this process on every page he reaches. Assuming that the link graph consists
of a single strongly connected component (ie. there is a path from every page to every
other page), the random surfer will eventually visit every page in the web graph. One
may consider this sequence of pages as a Markov chain and compute the stationary
probability of the random surfer being on a given page at any time.

The stationary probability can be computed using an iterative process. For a directed
graph G = (V, E) with nodes V = {v1, . . . , vn}, one assigns an initial probability at time
t = 0 of r0

i = 1
|v| to every node. In every iteration, ri is updated according to

rt+1
i =

∑
(vj,vi)∈E

cjir
t
j∑

(vj,vk)∈E cjk

where cij is the weight of the edge from vi to vj, or 1 if the graph is unweighted. The
iterative process stops when the probability vector r = (r1, . . . , rn) converges.

For graphs that do not consist of a single strongly connected component, this calcu-
lation may lead to undesirable results, and may not converge. If the graph contains a
sink, ie. a page with outdegree δ+(v) = 0, the stationary probability of the random
surfer being on that page converges to 1, with the probability of being on any other
page converging to 0. To ameliorate these effects, a dampening factor on the transitions
of the underlying markov chain is introduced, in the form of a ‘teleportation step’: On
every visited page, the random surfer ‘teleports’ to a random page with a probability of
0 ≤ ε ≤ 1, or chooses one of the outlinks with a probability (1 − ε). This step ensures
that the random surfer has a finite probability of visiting every page, and that he does
not get ‘stuck’ on a sink page. The teleportation step is carried out while updating the
probability scores:

rt+1
i =

ε

|V |
+ (1 − ε)

∑
(vj,vi)∈E

cjir
t
j∑

(vj,vk)∈E cjk
(3.1)

ε is usually set to a value between 0.1 and 0.3.
The stationary probability may also be computed using linear algebra methods: Let

A be the adjacency matrix of the web graph G. Let M be a row-normalized version of
A, that is (M)ij =

(A)ij∑
k(A)ik

. Then the PageRank vector r is the maximal eigenvector of(
ε

|V |
1 + (1 − ε)M

)>
,

provided that G is ergodic (Flake et al., 2004). Reformulating equation (3.1) as a vector
equation shows the kinship between PageRank computation and the power method for
computing the dominant eigenvector of a matrix:

rt+1 =
ε

|V |
1 + (1 − ε)M>rt
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If G is not ergodic, r needs to be normalized after each iteration.
The PageRank score ri is used for ranking web pages according to their overall

popularity. This score may be used to boost popular pages in cases where there are
many relevant documents for a query.

Evidence for the importance of PageRank in web retrieval is still scarce: According to
Craswell and Hawking (2004), only 11 of 74 submitted runs at the trec-2004 ‘Web’ track
used PageRank, and only one of the top systems used it. How to combine PageRank
and query-specific relevance measures is also an unsolved problem. Zaragoza et al.
(2004) reported the following method for their top-ranking system at trec-2004: They
normalized the PageRank scores, transformed them by

f(ri) =
w

1 + e− log(ri)+b

and added this factor to the query-specific relevance score. w and b were determined
empirically using queries from the trec-2003 ‘Web’ track; no indication is given in their
report regarding the magnitude of these parameters.

3.3 Personalized and Collaborative Retrieval

Personalized and collaborative retrieval are two approaches for improving the perfor-
mance and, indirectly, the satisfaction of the user. The central element of both strategies
is a user model that keeps a log of past interactions with the system, and which is used
to tailor the results of future interactions to the user.

One personalization strategy is the capture of search engine queries and the pages from
the result list that were selected in response to the query. A search in this ‘search history’
provides access to pages that were previously determined to be of high quality, and as
relevant to the query. This approach is implemented by several systems, for example
iskodor (Ruhl, 2003), SearchPad (Bharat, 2000), Amazon’s a9.com2, Eurekster3, and
Google personalized search4 (currently in beta stadium.)

More sophisticated attempts at personalization build profile of the user’s interests.
This profile is the used to either augment future queries, or to filter out unwanted
results from the result set. This approach is followed by the OutRide system (Pitkow
et al., 2002).

Inspired by collaborative filtering systems (Resnick et al., 1994), collaborative rank-
ing uses implicit relevance data from previous queries. A system implementing the col-
laborative ranking approach is the i-spy seach engine (Freyne and Smyth, 2004). i-spy
is implemented as a meta-search engine: it does not maintain its own index of web
pages, but instead queries several underlying search engines for results, re-ranks the

2http://www.a9.com, last visit on 2005/04/11.
3http://eurekster.com, last visit on 2005/04/11.
4http://www.google.com/searchhistory/, last visit on 2005/07/02.
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result lists and presents them to the user. i-spy logs queries to the search engine, as
well as which pages from the result list users select for further inspection. The number
of hits on a page p ∈ P for a query q ∈ Q is stored in a hit matrix H ∈ M|Q|×|P|(R).
For previously-selected pages and queries, the relevance of a page pk for a query ql is
determined by

relevance(pk, ql) =
Hlk∑|P|
i=1 Hli

The output is a stratified result list, the first part containing previously-encountered
pages, sorted according to their relevance score, and the second part containing results
from the meta-search engine.

3.4 Statistical Network Analysis

Research in the statistical properties of naturally occuring networks, including social
networks, indicates that many of them share several key characteristics. Well-researched
examples for natural networks include collaboration networks between movie actors,
internet autonomous systems, the web graph, the power grid of the United States of
America, or the neural network of the roundworm Caenorhabditis elegans. The increased
availability of data about natural networks has led to a number of publications studying
their properties in the last decade.

The degree distribution of many natural networks seems to follow a power-law dis-
tribution: The probability of a vertex having a degree of k is Pr(δ = k) ∼ k−γ. Many
naturally occurring networks follow such a degree distribution for varying values of γ.
Commonly cited examples include the web graph (with γ ≈ 2.1), the power grid of
the western United States (with γ ≈ 4), and the social network of movie actors (with
γ ≈ 2.3). The fat tail of the power-law distribution entails that a small number of
nodes with a very high degree provide connectivity for the bulk of the network.

Barabási and Albert (1999) conjecture that this degree distribution is a result of
the network growing over time, and the fact that new nodes in the network connect
preferentially to nodes with a high degree. The latter phenomenon is called preferential
attachment in the literature. In difference, the degree distributions of networks where
edges are added randomly between nodes follow a Poisson distribution.

The average shortest path length is the average length of the shortest path between
two nodes in the network. For networks that are not connected (or strongly connected
in the directed case), it makes sense to only examine the largest connected (or strongly
connected) component. For a random graph with n nodes and k edges per node, the
expected average path length is l ≈ ln n

ln k (Watts and Strogatz, 1998).
The clustering coefficient is defined by Newman and Park (2003) as

C =
3× number of triangles on the graph

number of connected triples of vertices
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(Watts and Strogatz (1998) use a slightly different formuation.) Here, a ‘connected
triple’ is a node that is connected directly to two other nodes. The clustering coefficient
is the probability, averaged over the network, that two neighbours of a node will also be
neighbours of each other. For a random network, the expected clustering coefficient is

C =
(k2 − k)2

nk
3

First evidence that social networks have a very low average shortest path length was
presented by Milgram (1967). In this experiment, participants were asked to send a
letter to a specific recipient, but only by passing them on in person to an immediate
acquaintance. Similar experiments were conducted later, for example by Dodds et al.
(2003). The resulting chains of acquaintance were surprisingly low, with typical chain
lengths between five and seven. The fact that two friends of a person are more likely
to be friends of each other – leading to a high clustering coefficient – was predicted
by Granovetter (1973); large-scale investigations of social networks (for example by
Newman, 2001) confirmed this claim.

Watts and Strogatz (1998) coined the term ‘small-world network’ for networks that
exhibit a high clustering coefficient while at the same time retaining a small average
shortest path length between two nodes. They showed that a small amount of ran-
domness introduced into a regular network (with a high average path length and high
clustering coefficient) will suffice to drastically lower the average path length, while
affecting the clustering coefficient hardly at all. Newman and Park (2003) conjecture
that while a high degree of clustering is a natural state for small networks, large social
networks exhibit a far higher degree of clustering than can be explained by the random
model.

The degree correlation is the correlation between the degree of neighbouring nodes
in a social network. Let Pr(δ) be the degree distribution of a network, that is, Pr(δ = k)

is the probability of a node v having degree k. For an edge e connecting nodes vi and
vj the excess degree δe of the nodes connected by e is one less than their degree δ(vi)

resp. δ(vj). The normalized distribution of the excess degree is

Pr(δe = k) =
(k + 1)Pr(δ = k + 1)∑

k kPr(δ = k)

The joint distribution Pr(δe = j, δe = k) is the probability that a randomly chosen edge
connectes two nodes with excess degree j and k. If the excess degrees of neighbouring
nodes are uncorrelated, then Pr(δe = j, δe = k) = Pr(δe = j)Pr(δe = k); this is the null
model.

The degree correlation in comparison to the null model is

r =
1

σ2

∑
j,k

jk(Pr(δe = j, δe = k) − Pr(δe = j)Pr(δe = k)),
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where σ2 =
∑

k k2Pr(δe = k) − (
∑

k kPr(δe = k))2 is the variance of Pr(δe).
Newman and Park (2003) note that a number of examined social networks have been

found to have a positive degree correlation, ie. nodes with a high degree tend to be con-
nected to other nodes with a high degree. In difference to this, non-social small-world
networks usually exhibit a negative degree correlation: nodes with a high degree are
usually connected to nodes with low degree. Examples for this phenomenon are neural
networks, food webs, peer-to-peer networks, or the internet. In the case of the internet,
a comparatively small number of primary ‘hubs’ distribute traffic to other autonomous
systems. One may conjecture that in communication networks, negative degree cor-
relation is a matter of economy: A highly-connected node requires a large investment
and high maintenance costs, but can provide connectivity to a disproportionately large
number of poorly connected nodes. In social networks, the number of social relations
maintained by a person is a matter of personality: A introverted person has fewer social
relations than a highly social person. Since individuals tend to associate with people
similar to themselves, social persons associate with other social persons, whereas solitary
persons associate with other solitary persons – leading to a positive degree correlation.

3.5 Semantic and Associative Networks

Semantic networks are a knowledge representation mechanism introduced by Quillian
(1968). A semantic network in its original definition consists of type nodes (or
concepts) and links between them (or their relations to each other), modeled as a
directed graph with labelled edges. A semantic network encodes the objective meaning
of a concept, as expressed by its relation to other concepts.

Quillian (1968) uses five different relations:

hyponymy or subclass-to-superclass relationships, usually called ‘is a’:

plant is a
−−→ living structure

modification pointers modify one concept by means of another:

structure mod
−−−→ living

disjunction groups several concepts into a disjunctive set:

air or
−→ water or

−→ earth

conjunction denotes a relation between concepts that form a conjunctive set:

living and
−−→ not animal and

−−→ with leaves

open-ended category for all other relations, for example the relation ‘from’, where
‘food’ is the subject and ‘water’ is the object of the relation:
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Figure 3.2: An example semantic network, illustrating three meanings for the word
‘plant’ (reproduced from Quillian, 1968, page 225).

@
@@

-

@@
-from

food

water

Semantic networks were a first attempt to represent knowledge using a network struc-
ture; they do not support formal semantics or an inference mechanisms (Woods, 1975).
Successor to semantic networks were description logics (Baader et al., 2003), which spec-
ified formal semantics while avoiding the problems of undecidability and computational
complexity of full first-order logics.

The ‘semantic web’ initiative (Berners-Lee et al., 2001) recently rekindled interest in
ontologies and knowledge representation. One of the cornerstones of the semantic web,
the Web Ontology Language owl5, uses description logics as part of its specification.

Associative networks are a simplified precursor of semantic networks: An asso-
ciative network contains only associations between concepts, but does not distinguish
between different types of relations. The strength of the association between two con-
cepts is expressed by the weight of the link connecting them, but no data is available

5http://www.w3.org/2004/OWL/, last visit on 2005/07/08.
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as to why the two concepts are related. Associative networks are the foundation of
associative retrieval (section 3.1.2).

3.6 Spreading Activation Search

Spreading activation search is a search technique for network graphs. It is charac-
terized by the concept of ‘activation energy’ that is spread in the graph from ‘activated
nodes’ to other nodes by means of outbound edges.

This search technique is motivated by models of neurophysiological activity. Neurons
in a neural network that are activated are said to ‘fire’, transmitting (electrical) activa-
tion energy to other neurons with which they are connected. If the activation energy
received by a neuron is sufficiently high, the neuron itself begins to ‘fire’, further spread-
ing the activation in the neural network. According to Anderson (1983), it is unclear
whether the concept of spreading activation can be applied to individual neurons, or
whether it should rather be applied to sets of neurons. Spreading activation is the core
of several theories concerning the organization of human memory, and has been applied
extensively for search in semantic and associative networks.

A network graph G = (V, E) consists of nodes V = {v1, . . . , vn} and directed edges
E ⊆ V × V . A weight matrix C ∈ M|V |×|V |(R) contains the weight of each edge, with cij

signifying the weight of the edge from node vi to vj (or 0 if no such edge exists.) Edge
weights are usually positive; negative edge weights may be used to simulate inhibitory
links.

A node vi is said to be activated if at time t its activation energy at
i > 0. In the

following, spreading activation is described for discrete time scales only; the continous
case is of little interest for applications in ir.

Spread of activation occurs in several iterations, called ‘pulses’ in analogy to the
operation of neurons. Each iteration consists of four steps, as detailed in figure 3.3:

1. pre-adjustment, decay:
In order to determine the output energy for a node, a function fo is applied to the
activation level in the previous iteration:

ot
i = fo(at−1

i )

The function fo determines how energy is spread to neighbouring nodes.
2. spreading:

input energy iti is accumulated for each node in the network:

iti =

|V |∑
j=1

ot
jcji
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Figure 3.3: Activity diagram for spreading activation (after Preece, 1981)
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3. post-adjustment, decay:
The activation level for each node is determined from its input energy and its
activation level at the last iteration:

at
i = fa(at−1

i ) + fi(i
t
i)

4. termination check:
When a fixed number of iterations has been reached, or other conditions have
been met (for example, the amount of activation energy dissipated in the current
iteration is zero, or is lower than a fixed threshold), the algorithm stops.

Spreading activation energy is an extremely flexible model. By carefully chosing the
edge weights, the functions fa, fi and fo, and the termination condition, a number of
different search strategies can be implemented.

Preece (1981) distinguishes three types of pre-adjustment:

full strength spreading: each neighbouring node receives the full activation energy of
the source node:

ot
i = at−1

i

unit spreading: From each activated node, neighbouring nodes receive a fixed amount
of energy, regardless of its activation energy:

ot
i =

{
1 if at−1

i > 0

0 otherwise

equal distribution spreading: Each receiving node gets an equal share of the output
energy of the source node:

ot
i =

at−1
i∑

1≤j≤|V |
(vi,vj)∈E

cij

During post-adjustment, the effect of the received energy is changed at the destination
node. Several stratagies are used in this stage to limit the spread of activation:

retention: One may choose to not retain the previous activation level (fa ≡ 0), or to
decrease it by a fixed factor (fa(a) = λa for 0 < λ < 1).

thresholding: If the received energy is smaller than a predefined threshold ω, it may be
dropped. A threshold function on the received energy acts as a ‘noise filter’, can-
celing out small changes in activation energy and limiting the number of activated
nodes.
Popular choices for the threshold function are the Heaviside function (Θ(x) = 0 for
x ≤ 0, Θ(x) = 1 otherwise), or sigmoidal functions like the tangens hyperbolicus:

fi(i
t
i) = itiΘ(iti − ω) or fi(i

t
i) = iti tanh(iti − ω)
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inverse destination frequency spreading: The input energy is divided by the sum of
the weights of the incoming edges over which it was received:

fi(i
t
i) =

iti∑
1≤j≤|V |
(ej,ei)∈E

cji

A system with equal distribution spreading, no retention of activation energy, and no
thresholding conserves the total energy in the system.

When using spreading activation search in a dense graph, one must take care to
limit the spread of activation through the graph; otherwise, the whole graph will be
activated after a few pulses. Constrained spreading activation adds further methods
of limiting the dissipation of activation energy in the network. Commonly used heuristics
include (Crestani, 1997):

distance constraint: Spread should stop after a certain distance from the originally
activated nodes has been reached; this prevents the search from arriving at nodes
that only have a tenuous connection, via several links, to the original nodes.

fan-out constraint: Spread should stop at nodes with a high fan-out, since these usually
denote a very general concept, and further exploration from this concept is unlikely
to lead to helpful results.

path constraint: The spread of activation energy should prefer links that contain more
meaningful information if possible, and resort to links of certain other categories
only if no other are available.

activation constraint: Activation is disseminated only from nodes whose initial activa-
tion value exceeds a certain threshold, which may differ depending on the node
type.

The application of spreading activation search for text retrieval was studied by Salton
and Buckley (1988a), who found its performance to be comparable to vector-space meth-
ods. Pirolli et al. (1996) used spreading activation to unify content-based and link-based
information for searching the World Wide Web. It was also used by Crestani and Lee
(2000) as part of the WebSCSA system, an agent browser that follows outgoing links
from visited web pages and correlates them with the user’s past interests.

An overview of spreading activation in information retrieval is found in (Crestani,
1997), who notes that the effectiveness of spreading activation search depends crucially
on the structure of the network graph. Despite various prototype systems described
in the literature, no commercial system implementing spreading activation search is
available.

3.7 Retrieval Performance Evaluation

The evaluation of retrieval performance consists of an evaluation scenario (or set-
ting), an evaluation task, and evalution metrics which provide a measure of the
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D PPos PNeg = D \ PPos

(total documents) (predicted positive examples) (predicted negative examples)
Pos TP = Pos ∩ PPos FN = PNeg \ Neg

(positive examples) (true positives) (false negatives)
Neg = D \ Pos FP = PPos \ Pos TN = Neg ∩ PNeg

(negative examples) (false positives) (true negatives)

Figure 3.4: The confusion matrix lists possible subdivisions of the sets D, Pos and PPos.

performance. The choice of setting also determines the appropriate evaluation metrics.
We can distinguish broadly between interactive evaluation scenarios and batch sce-

narios. In an interactive setting, we measure the ability of a user to solve the evaluation
task, using the information retrieval system under evaluation. An example task for this
setting is finding out the answers for a questionnaire. We would measure the perfor-
mance of the system in terms of the average number of questions attempted, the average
number of questions answered correctly, and the time taken to fill out the questionnaire.

In a batch (or non-interactive) setting, we measure the ability of the system to find
relevant documents as regards a query and rank them accordingly. Because the perfor-
mance evaluation does not depend on the abilities of the users, experiments using batch
settings are easily repeatable and comparable. A number of standard test collections for
batch retrieval exist.

For a non-interactive setting, the individual evaluation task consists of a set of doc-
uments D and an information request q. The set of documents relevant to this query
Pos ⊂ D is usually determined by a human expert. The information retrieval system
returns a set of answers d1, . . . , dk ∈ PPos ⊂ D in respect to the information request q,
as well as a ranking function rank : PPos → {1, . . . , k}. The ranking function imposes an
order on the returned documents.

The document sets D, Pos and PPos can be further subdivided as seen in figure 3.7.
True positives are documents deemed relevant by both the human expert and the infor-
mation retrieval system. False positives are returned by the ir system, but were reckoned
irrelevant to the query by the human expert. False negatives are documents relevant to
the query which are not found by the system. True negatives are not returned by the
system and are considered irrelevant by the human expert.

In cases where the ranking of the result list is not unique, interval arithmetic (Hayes,
2003) may be used. This phenomenon occurs in scoring information retrieval systems,
when two or more documents are assigned the same score, and the desired document is
one of these documents. Take for example, an ir system which returns three documents
with the same score on rank 3, 4 and 5 of the result list, and returns the desired document
d on rank 5. In this case, reporting the rank of d as 5 would be pessimistic, since the
system might have returned it on rank 3 or 4 under other circumstances. Instead, the
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rank is an interval: rank(d) = [3, 5] or rank(d) = 4±1. Average rank and other statistics
need to be computed using interval arithmetic.

Alternatively, one may choose to report only the midpoint of the interval, or the
actual rank reported by the ir system. Where detailed information about the ranking
mechanisms is not available, the latter may be the only option.

Important evaluation metrics for non-interactive retrieval are introduced in the fol-
lowing subsections.

3.7.1 Precision and Recall

Precision and recall measure the performance of batch information retrieval systems and
have been in use for this purpose for at least thirty years.

Precision is defined as the fraction of documents returned by the ir system that is
actually relevant:

Prec =
TP

PPos

Recall is the fraction of relevant documents returned by the ir system:

Recall =
TP

Pos

Precision and recall do not take a ranking of the documents into account. They
presume that an ir system returns a fixed set of answers for a given query, and that all
returned documents are subsequently examined by the user – an appropriate assumption
for early boolean retrieval systems.

In order to adapt this measure to ranking models, the result list is examined in order
of increasing rank, and precision is measured when a specified recall level has been
reached, ie. when a specified fraction of the relevant documents has been seen. An
average precision is computed by averaging over the precision at certain standard
recall levels. (For example, at a recall of 75%, 50% and 25%; interpolation may be
necessary if the precision at the exact recall level cannot be determined.) Average
precision at seen relevant documents averages over the precision at every relevant
document in the result list.

For very large collections, the set of relevant documents Pos can be difficult (and
expensive) to determine, as this task presumes knowledge of all documents in the col-
lection.

Precision and recall are similar to the roc (receiver operating characteristics) model
(Hanley and McNeil, 1982) popular in machine learning. In difference to the roc model,
precision and recall do not take the number of true negatives into account. True negatives
usually dominate in information retrieval, since only few documents in the document
collection are relevant to a specific query. (See also (Fürnkranz and Flach, 2003) for a
comparison of evaluation metrics.)
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3.7.2 Metrics for Known-item Retrieval

In the known-item retrieval task, only a single document from the collection is
presumed relevant to the query; the objective is to find this document as quickly as
possible. The known-item task is especially popular in spoken document retrieval and
retrieval of ocr documents; it was used at trec-5 and trec-6 in this function (Kantor
and Voorhees, 1996; Garofolo et al., 1997).

Performance is measured by the rank at which the desired document appears in the
result list. The average rank for a set of queries q1, . . . , qk and relevant documents
d1, . . . , dk is

rank =
1

k

k∑
i=1

rank(di)

Another popular measure is the harmonic mean of the rank at which the desired doc-
ument occurs; this is also called inverse average inverse rank in the known item
retrieval context and is defined as

IAIR =
k∑k

i=1(rank(di))−1

Both average rank and inverse average inverse rank score 1.0 for perfect retrieval;
inverse average inverse rank has the advantage of rewarding systems that return the
desired document early in the result list.

3.8 Summary

We describe three different models for information retrieval: Vector-space retrieval treats
documents and queries as vectors in a term vector space; relevance measures are based
on the similarity of document vectors and the query vector. Weighting schemes like the
tf · idf scheme improve the performance of vector-space retrieval. Associative retrieval
models terms and documents as nodes in an associative network and uses graph-based
search techniques. In hyperlinked environments, spectral methods on the adjacency
matrix of the hyperlink graph are common.

One such spectral method is described in detail: The PageRank algorithm is a well-
known algorithm for link analysis and is commonly used for web retrieval. We describe
the model it is based on, methods for computing it, and how to integrate it into an
ir system.

A brief overview of personalized and collaborative retrieval describes existing attempts
at integrating a user model into ir systems. User models are based on past interactions
of the users with the system.

Statistical network analysis describes the properties of naturally occuring networks
and devises models for them. Measures describing the characteristics of networks such
as the web graph or social networks are introduced.
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Semantic and associative networks are formalisms for knowledge representation. To-
gether with spreading activation search, they form the basis for many early models of
the human mind. Spreading activation search, especially when used with constraints, is
a current ir technique for many applications.

We conclude the chapter by describing methods for evaluating the performance of an
ir system. We distinguish between interactive and non-interactive evaluation scenarios
and describe metrics for two variants of non-interactive evaluation.
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Related Work

As noted by Romano et al. (1999), the connection between information retrieval and
social processes has not been extensively researched to date. Even though information
seeking has long been recognized as a social process (Wilson, 1981, 1994), few projects
support social interaction in the information retrieval process or exploit social networks
to achieve better performance; Romano et al. (1999) calls this the ‘ir paradox’.

This section describes systems that exhibit some characteristics of a social ir system.

4.1 Google

Google1 was one of the first web search engines to incorporate analysis of the web graph
into its ranking algorithms. The PageRank algorithm (see Brin and Page, 1998; Page
et al., 1999) was a novelty among search engines at the time and was quickly singled out
among independent observers as the main factor for its success. The publication of a
tool for determining the PageRank value of a specific page (on a scale from one to ten)
led to a frenzy among ‘search engine optimizers’ – consultants concerned with achieving
a high rank for a specific page and query on leading search engines. The quest for a
high PageRank value shaped the topological nature of the web graph. Common tactics
include selling links from high PageRank sites to promote sites with lower PageRank,
and installing ‘link farms’: autonomous networks of highly interlinked web sites with
little and highly similar content, all for the purpose of increasing the PageRank value of
a given web page.

Google today is a successful publicly traded corporation with a market capitalization
of more than 80 billion U. S. dollar. It provides numerous free services, for example
an email service2, a UseNet archive3, a photo organizer4, and several specialized search
engines for images5, scholarly articles6, weblogs7 and others. The main source of revenue

1http://www.google.com/, last visit on 2005/09/18.
2http://www.gmail.com/
3http://news.google.com/
4http://picasa.google.com
5http://images.google.com/
6http://scholar.google.com/
7http://blogsearch.google.com/
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for Google is its advertisement service that allows clients to place text-only ads on the
result pages of the search engine.

The impact of PageRank on the quality of Google’s search results is not known; as is
common for a web search engine, the innards of its scoring algorithm are kept secret.
Several other factors may account for its singular position among search engines today:

• Google’s homepage is very clean and uncluttered, compared to competitors like
Yahoo!8. This may account for its popularity among users and its perceived quality.

• For a long time, Google crawled a much larger portion of the web than any of its
competitors, thereby enabling it to find pages buried much deeper in the web. The
depth of Google’s index was only recently surpassed by Yahoo!9; its result quality
however, by popular opinion, was not.

• Google implemented a highly scalable and easily adaptable processing and stor-
age architecture, centered around the ‘map-reduce’ paradigm borrowed from func-
tional programming languages, and GoogleFS, a fault-tolerant distributed filesys-
tem. The size of Google’s compute grid is estimated to comprise between 10 000
and 100 000 cpus, thus ensuring consistently high performance and availability.

To summarize, Google pioneered link analysis in information retrieval and managed
to incorporate it into a highly successful product.

4.2 ReferralWeb

ReferralWeb (Kautz et al., 1997b,a) is a system for mining social relations from the web
and exploring social networks. The authors describe it as ‘combining of social networks
and collaborative filtering’; its focus is extracting a social network from web pages,
finding experts for a topic and linking the searcher to the expert by a path in the social
network.

The ReferralWeb prototype bootstraps the social network by searching for web pages
with an individual’s name. From the result pages, proper names are extracted, using
techniques from information extraction (Sundheim and Grishman, 1995). Social links
between two individuals are determined by the ratio of web pages containing both names
and web pages containing only a single name. This process is repeated recursively to
determine the social neighbourhood of an individual. Social networks are also extracted
from Usenet archives, coauthorships of scientific publications and organization charts.

Several operations are supported on the resulting social network. Paths from one
person to another are used to determine a chain of referrals that links a searcher to an
expert for a specific topic. A user can search for an expert on a topic either on the whole

8http://www.yahoo.com
9http://www.ysearchblog.com/archives/000172.html, last visit on 2005/09/19.
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Figure 4.1: Screenshot of the ReferralWeb 2.0 prototype

social network, or just in his neighbourhood. The system also supports visualizing and
exploring the social network in an interactive, graphical manner.

ReferralWeb differs from other social networking applications because it extracts social
links from publicly available information on the web; it does not require the user to sign
up with a service and explicitly name his colleagues and collaborators.

The prototype system was developed as part of Mehul A. Shah’s master’s thesis (Shah,
1997); a second implementation was performed by Yooki Park and is available on the
web10 (see also figure 4.1). A formal evaluation of ReferralWeb’s effectiveness, as com-
pared to other information retrieval systems, was not conducted to our knowledge.

4.3 Collaborative Information Retrieval Environment

The ‘Collaborative Information Retrieval Environment’ (cire) by Romano et al. (1999)
combines features of information retrieval system and group support systems. A group
support system is defined as a ‘computer-based information system to support intellec-
tual collaborative work’. Group support systems provide features to facilitate commu-
nication, deliberation, problem solving and decision making processes in groups.

cire is implemented on top of a conventional web search engine, AltaVista in this case.
The user interface of the underlying search engine is augmented by additional interface

10http://foraker.research.att.com/refweb/version2/RefWeb.html, last visit on 2005/09/19.
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elements to access the collaborative features of the system. The user’s familiarity with
this interface ensures a gentle learning curve for new users.

cire stores information about past queries, past results, and the browsing history of
its users, as well as comments and relevance judgements for individual pages, thereby
serving as a search memory for users. This information is also shared between users.

The asynchronous nature of the system allows users to search collaboratively even if
they are geographically or temporally distributed. By accessing other users’ queries and
annotations, one can continue a research task where another user left off. The search
memory also allows novice users to gain familiarity with the way experts use the system.

Romano et al. (1999) note that the collaborative features of the system were often ig-
nored or forgotten by users; this is attributed to the non-intrusive nature of the system’s
user interface.

4.4 I-SPY

i-spy is an experimental meta search engine developed at University College, Dublin,
Ireland. As a meta search engine, it does not maintain its own index of web pages;
instead, it relies on another web search engine (Google in i-spy’s case) for results. Results
from the underlying search engine are re-ranked and presented to the user.

i-spy implements collaborative ranking, borrowing ideas from collaborative filtering:
It aggregates relevance judgements from a community of people and uses them in later
searches for the same keywords to boost pages which are known to be good. The result
list is stratified: Previously ranked pages are displayed first, followed by other pages from
the result list of the underlying search engine. If the impact of relevance judgements is
not discounted with time, this may lead to a fossilization of the result lists, presenting
pages as relevant which have long since changed or become out of date.

Users are required to join a specific community before executing a query. Anonymity
is thus ensured, as the usage data is aggregated among one community and cannot be
traced back to one specific member. One user can only be part of one community at a
time, requiring the user to change the community as the subject matter of his search
changes. Since this step must be executed consciously by the user, it often leads to
‘communities of one’: Communities which consist only of one user (with names such as
‘Pete’s searches’) and used only to track the search history – a task which could also be
accomplished using simpler personalization systems.

i-spy does not facilitate the formation of a community. It does not use information
about the social relations between its users, and does not facilitate the formation of such
relations.

The influence of collaborative ranking methods on user performance was evaluated in
(Freyne and Smyth, 2004): Students were issued with a questionnaire of 25 questions
and were asked to solve it, using I-Spy as a web search engine. A training group did
not use collaborative ranking, but the usage data from the training group was fed into
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the collaborative ranking process. The test group solved the same questionnaire, using
collaborative ranking with usage data from the training group.

Using a training group of 45 students and a test group of 47 students, it was concluded
that the test group indeed benefitted from the usage information from the training group:
both the number of attempted questions and correctly solved questions increased, and
the average position of results clicked significantly decreased.

4.5 Summary

We describe four systems that pioneered components of a social ir system:
Google is currently one of the most successful web retrieval companies. Google pio-

neered link analysis for web retrieval, which was quickly determined as one of the factors
responsible for its success.

ReferralWeb mines social relations from the web and visualizes them. Its primary
purpose is finding experts on a topic and finding paths of referrals between individuals.

The Collaborative Information Retrieval Environment cire combines information re-
trieval systems and group support systems, allowing users to collaborate on a retrieval
task.

The i-spy search engine implements collaborative ranking by keeping track of previ-
ously entered queries and documents, and re-ranking documents accordingly. Documents
are promoted to the top of the rank list if they were previously selected for a similar
query.
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Models

This chapter introduces a domain model for social information retrieval. The domain
model identifies entities pertinent to the retrieval task, as well as their relations. It forms
the basis for the retrieval techniques described in chapter 6.

5.1 A Domain Model for Social IR

Social information retrieval is defined as the incorporation of information about social
networks and relationships into the information retrieval process:

social information retrieval = social networks + information retrieval

The traditional models for information retrieval concern themselves with documents,
queries, and their relations to each other: A document is relevant to a query, a docu-
ment references other documents, a query is similar to other queries. Likewise, social
network analysis models individuals and their relations with each other: friends and fam-
ily, acquaintances, collaborators, or sexual relationships. Information retrieval systems
traditionally do not model individuals, neither in their role as users of the system, nor as
authors of the retrieved documents, and social networks do not incorporate retrievable
content. A simplistic view of the domains is pictured in figure 5.1.

Social ir combines the two models with each other. By incorporating individuals
into the model, we gain a greater insight into their role in the information retrieval and
production process (figure 5.2). New associations between the entities become apparent:
Individuals appear in their role as information producers or information consumers,
queries relate to an individual’s information needs, or describe a topic about which an
individual possesses knowledge.

A social ir system is characterized by the presence of all three types of entities:
documents, queries, and individuals. Most systems will only use a subset of the possible
associations between the entities, depending on the domain of the system. Modeling
the relations between individuals is mandatory for a social ir system; all other types of
associations are optional, as long as all three entities have an association with at least
one other.

The motivation for social ir is rooted in the belief that an information producer and his
product cannot be separated: Information does not spring into existence spontaneously;
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it is always produced by an individual as an expression of his state of mind. This
implies that any judgement about the product can be used to infer a judgement about
the producer, and vice-versa. Social ir uses this observation to apply judgements about
the information producer to his products. Judgements about the producer are derived
from an analysis of the social network. The producer’s relationship with his peers is
used to draw conclusions about the nature of his products.

Understanding the social fabric in which information production takes place is espe-
cially important when only limited understanding of the documents or the information
needs is available. Traditional information retrieval techniques which are based solely on
analysing document content, while very successful in many contexts, fail badly when the
information need is underspecified, and when a large number of relevant documents ex-
ist. In this sense, social ir can be understood as a formalization of search techniques we
commonly use to assess the quality of information – by looking at the author’s standing
in his community.

An example may serve to clarify this point: Suppose that we try to find an authori-
tative scientific paper on a certain topic. A search in a database reveals publications by
five different authors. Further searches reveal that the first author has collaborated with
three of the others, whereas the last author is a ‘lone ranger’ and has not collaborated
with any of the other authors. When trying to choose where to begin, we would probably
chose a paper by the first author, because he has the best standing in the community of
his peers, and as such may be presumed to be the most authoritative source. We would
probably disregard the last author, since he has no connections to other people studying
the same field.

The same principle can be applied to other instances of information production in a
social environment: We tend to favour authors who engage in active collaboration and
exchange of ideas; this is usually seen as a sign of thorough and diligent work.

5.2 Mediums for Social IR

Referring to the examples of social information spaces in the introduction (section 1.2),
we now identify entities, roles, and associations for selected examples, and show that
these mediums are valid domains for social ir:

• The semantic web (as described in section 1.2.6) is a prime example for social
search, as it supports the explicit modeling of all three entity types: The foaf
standard specifies a type <foaf:Person> for modeling individuals, and a prop-
erty <foaf:knows> for relations between individuals. The Dublin Core standard
specifies the <dc:creator> relationship for linking documents to their author;
foaf specifies a similar relationship via the <foaf:made>/<foaf:maker> property.
The <dc:relation> property identifies associations between documents, and the
<dc:subject> property contains the topic and keywords for a document. A per-
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son’s interests are expressed with the <foaf:interest> property. The OpenSearch
standard allows one to publish information about which documents are relevant
to a specific query. Combined, these three standards allow for a complete and
machine-readable description of all parts of the domain.

• Mailing list archives (section 1.2.4) contain less explicit information. Individual
users are identified by their email address; thus, authorship information is eas-
ily available for each message. References between messages are extracted from
the In-Reply-To: and References: header lines; these are not fully supported
by every email client and may lead to information loss. Information extraction
techniques may also be used to identify follow-up messages. Relations between in-
dividuals are identified based on whether two individuals corresponded with each
other on the mailing list. A conventional text search engine provides relevance
assessments for queries and documents. Note that in this case, no explicit rela-
tion between queries and individuals is extracted; rather, a person’s interests are
characterized by the union of the messages he wrote.

• While the previous two examples were primarily concerned with modeling the in-
formation production process, the iskodor system (introduced in section 1.2.5)
contains a different subset of the social ir model: the information retrieval pro-
cess. Individuals submit queries to the system and thereby express their informa-
tion needs. Explicit feedback determines which document is relevant to a query.
By recording the individual who submitted the feedback, associations between
individuals and documents are stored. Measures like peer relevance (Gül, 2004)
express relations between users. iskodor lacks associations between documents
or between queries; it nevertheless contains all components to enable the use of
social search techniques.

From this comparison, we see that the social ir model is applicable in diverse situa-
tions. Its key concepts can be identified in information retrieval environments as well
as information production and sharing environments.

5.3 Additional Aspects

This section discusses additional aspects of applying social retrieval methods. We discuss
practical issues for their implementation as well as social and philosophical ramifications
resulting from their application.

5.3.1 Bootstrapping the Social Network

Social information retrieval presupposes the existence of a social network between the
content producers. In some cases, this network can be inferred based on the content;
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for example, the coauthorship network of scientific publications is such a social network.
One may also use social networks that are completely unrelated to the produced content,
for example by asking the authors to name their peers in the network explicitly.

In the latter case, it can be difficult to persuade users of an existing system to enter
data about their personal contacts, especially if they do not perceive an immediate
advantage in doing so. On the other hand, experiences with existing systems, for example
social networking services like Friendster1, Orkut2 or openBC3, show that participants
readily connect to other users of the same system, forming an intricate and reasonably
complete social network. The perceived value of disclosing one’s social neighbourhood
seems to outweigh potential privacy concerns. A combination of such systems and an
information retrieval system constitutes a fertile ground for the application of social
search techniques.

Unsuccessful formation of the social network results in performance degradation of
the retrieval process. In particular, algorithms that use the global structure of the social
network are ineffective if the network is very sparse or fractured into many different
components; one such network is described in section 7.1.2. In this case, one has to
resort to other ir methods, or limit the influence of the social component of the retrieval
system.

5.3.2 Privacy, Anonymity, and Plausible Deniability

Privacy matters quickly become a concern as more and more information can be tied
to a specific person, especially when this information concerns said person’s interests
and social ties to other people. Therefore, a user of such a system needs to be aware
of the information that is available on him and how it is used. He needs to know that
information about certain actions is recorded and is available to others.

We describe techniques that actively make use of the fact that information can be
tied to a specific user and can be made available to others – in order to identify relevant
individuals and their content. As such, we believe that they should only be used in
environments where the information is publicly available anyway. We oppose to them
being used in combination with information gathering techniques such as evaluating
browsing histories: In such an environment, the user has no direct control about the
information that is published about him.

In other applications, measures need to be taken to ensure anonymity of the individual
users and, preferably, plausible deniability (an individual user can plausibly deny that
a specific piece of information originated from him.) How to employ our techniques in
such an environment is not subject of this thesis.

1http://www.friendster.com/, last visit on 2005/10/11.
2http://www.orkut.com/, last visit on 2005/10/11.
3http://www.openbc.com/, last visit on 2005/10/11.
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5.4 Classification and Comparison to Other Approaches

In order to classify the social information retrieval approach, we adopt a domain model of
information retrieval as in figure 5.3. In difference to process models for ir, for example
(Baeza-Yates and Ribeiro-Neto, 1999, p. 10), or earlier domain models as in (Frakes and
Baeza-Yates, 1992, p. 2), this domain model omits implementation details. It focuses
on three main aspects of information retrieval: Aspects of human-computer interaction,
the retrievable content, and the user’s information needs.

User aspects like interface design and information-seeking behaviour are an important
factor for the effectiveness of an ir system. While the inclusion of individuals into the ir
system is an important characteristic of social ir, we do not describe the implementation
of a complete ir system and as such do not deal directly with issues of user interaction.

As regards the retrievable content, most of the literature is concerned with operations
on natural-language text, like language detection, stopword removal, stemming, and
term selection. A computer’s understanding of natural language is limited, and those
language techniques which allow a deeper understanding of the semantics of a text are
prohibitively expensive and are only used for information retrieval in limited settings:
For example, shallow parsing is used in question-answering systems.

Metadata – data about data – aids the evaluation of documents by providing context.
Metadata takes diverse forms, the simplest being descriptive data, for example author or
publication date. The analysis of the associations of a particular document is especially
important in web retrieval, due to the hyperlinked nature of the web.

Social ir takes association analysis one step further, by not only analysing associa-
tions between documents, but also between documents and their authors, and between
authors. It works on a deeper level than bibliographic reference analysis and is able to
infer evidence about documents where other methods of association analysis fail.

The social ir model (as in figure 5.2) also incorporates associations between individuals
and queries, and is able to model collective information needs. Adopting the notion
that the same representation can be used for queries and documents (as it is present, for
example, in the vector space model), the techniques for retrievable content can also be
applied to queries. We have already described integrated information sharing systems
like iskodor that treat queries in a similar way to retrievable content.

Social ir also shares features with systems that do not fit in the domain model for
information retrieval. Notable examples are the following:

Collaborative filtering systems, also called recommender systems, tailor the results
of the search to one specific user. A profile of this user must be available to
the system, which may either be gathered from previous usage data, or explicitly
constructed. Associations between individual users of the system are either not
present at all (for systems that take the complete data into account when producing
recommendations), or generated based on the agreement of the users’ profiles.
Collaborative filtering systems make no use of social relations between users.
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Figure 5.3: Classification of social networks in information retrieval. Social networks are
a form of metadata for retrievable content, closely related to other association
analysis like bibliographic reference analysis.

40



Chapter 5 Models

Collaborative ranking systems aggregate explicit relevance judgements from a group of
people. These relevance judgements are used for ranking of result lists. Collabo-
rative ranking systems usually treat the group as uniform: A relevance judgement
of any member is worth the same as any other.

Expert location may be considered the inverse of social ir: In expert location, one tries
to determine the authority of a person based on the content they produce, whereas
in social ir, we try to determine the quality of content based on the authority of
the author.

Trust models treat links in a social network as a measure of trust or distrust. In differ-
ence to this, links in social ir are not an explicit measure of trust, but rather one
of social interaction.

5.5 Summary

We describe a domain model for social information retrieval that includes three promi-
nent types of entities: documents, queries and individuals. Possible associations between
these entities are given in order to justify their inclusion in the retrieval model. We illus-
trate the application of the domain model, using mediums from section 1.2 as examples.

Practical issues for the application of the domain model are discussed, as well as
privacy concerns and acceptance problems.

Social information retrieval is classified as a kind of metadata analysis and related
to other types of association analysis. It is compared to similar approaches that lack
important characteristics of a social ir system.

41



Chapter 6

Techniques

As detailed in chapter 5, what sets social ir apart from other information retrieval
settings is the inclusion of a social network. The constituents of the social network are
not the objective of the retrieval process; instead, they provide additional information
about the retrievable items. This information needs to be integrated in the retrieval
process in a meaningful way.

6.1 Associative Network Model

Based on the domain model in figure 5.2, we use an associative network (section 3.5) as
the underlying representation. An associative network is a graph of information items,
with unlabeled, weighted, directed or undirected edges (‘associations’) between nodes.
In agreement with the domain model, we use three kinds of nodes: for individuals,
documents, and queries.

For modeling one specific social ir task, we use only a subset of the possible associa-
tions, as in figure 6.1. We model a domain that includes documents, associations with a
document’s author, and a social network between authors. The relevance of a document
as regards a query is determined automatically, using standard text retrieval methods.

For a set of individuals I and a set of documents D, the domain is represented by
a weighted, directed graph G = (V, E), where V = I ] D and E ⊆ V × V . A weight
matrix C ∈ MV×V(R≥0) contains the weight of the edges. For edges between individuals
e ∈ I× I, the weight function expresses the strength of a social relationship between two
individuals; for other types of edges, suitable weight are chosen. This model is also able
to accomodate for unweighted social networks (by using a uniform weight function) and
undirected networks (by using two directed edges (v, v ′) and (v ′, v) for every undirected
edge {v, v ′}).

The task on this domain is the retrieval of documents from keyword queries. This
task is the most common task in information retrieval, which ensures comparability with
other systems. Systems that store associations between users and queries, or between
queries and documents, are mostly found in the experimental field of personalized and
collaborative retrieval; they have not found their way into the mainstream of ir yet.

Limiting ourselves in this way allows us to formulate definite goals and develop algo-
rithms which can be compared with mainstream ir systems.

42



Chapter 6 Techniques

document

relevance assessment
automatic

pr
od

uc
ed

by

query

related to

individual

Figure 6.1: A model for a concrete social ir task, using only a subset of the associations
present in the general domain model.

We describe two techniques for this task: one global technique, based on the PageRank
algorithm, and one local technique, based on spreading activation search. The global
technique is motivated by the idea that we would be more interested to read what an
authoritative person has to say about a topic, regardless of what the topic is. The local
techniques implements the notion that an author is knowledgeable about a subject if he
is connected to other authors working in the same field.

6.2 Vector-Space Model

The vector-space model is not a technique for social information retrieval, as it does not
include social networks. We use the vector-space model for two purposes: It is a method
for matching keyword queries against documents in the collection and is used in this
role in social ir techniques described later in this chapter. We also use it as a baseline
method for measuring the performance of social ir in chapter 7.

We do not to re-implement vector-space search, but use a freely available implementa-
tion instead. Specifically, our system is based on the the Lucene1 library, an open-source
information retrieval library. Lucene uses a modified vector-space model; the main scor-
ing formula is

score(q, d) =

∑
t∈q

√
tf(t, d) · idf(t)2√∑

t∈q idf(t)2
√ ∑

t∈d tf(t, d)
(6.1)

1http://lucene.apache.org/, last visit on 2005/09/09.
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where
idf(t) = log

|D|

df(t) + 1
+ 1

Scores are normalized to fall in a range of 0.0 to 1.0.
This weighting scheme is easily related to the standard vector-space model by using√
tf(t, d) instead of tf(t, d) and defining tf(t, q) ≡ 1. Then

score(q, d) = cos ∠(q,d) =
q · d

‖q‖ · ‖d‖

=

∑
t∈T

(√
tf(t, q) idf(t)

) (√
tf(t, d) idf(t)

)
√∑

t∈T

(√
tf(t, q) idf(t)

)2
√∑

t∈T

(√
tf(t, d) idf(t)

)2

=

∑
t∈q

√
tf(t, d) idf(t)2√∑

t∈q idf(t)2
√∑

t∈d tf(t, d) idf(t)2

By omitting the term idf(t)2 from the term
√∑

t∈d tf(t, d) idf(t)2 in the denominator,
one arrives at the main scoring formula in equation (6.1). Omitting the inverse document
frequency from the document normalization factor allows one to precompute this factor
and store it in the index; otherwise it would be necessary to recompute the normalization
factors every time a document is added or deleted from the index.

Lucene includes various modifications of the scoring method to account for partial
matches and for the proximity of terms; these are not used in our experiments in section 7
and are not described here.

The exact formulation of the weighting formula is not crucial; one could also replace
the baseline method by different version of the vector-space model, or use a probabilistic
approach. This fact allows us to replace the text retrieval component by a state of the
art implementation.

6.3 PageRank

PageRank is a global authority measure for graphs; how to compute it is described in
section 3.2. Its primary use is an authority measure for web pages.

6.3.1 Applicability of PageRank

In this section, we compare the web graph with social networks and determine the
applicability of PageRank to social networks.

The PageRank algorithm in its formulation as in equation (3.1) is equivalent to the
power method for computing the dominant eigenvector of a matrix. The speed of con-
vergence for the power method depends on the quotient λ2

λ1
; for stochastic matrices, λ1
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is always 1. Therefore, the convergence of PageRank depends on the magnitude of λ2,
which is small compared to λ1 for power-law graphs.

The power law holds true for the web graph; recent studies have determined that the
in-degree of nodes on the web graph follows a power-law distribution with an exponent of
about γ ≈ 2.1, thus ensuring rapid convergence of the PageRank computation. The same
power law is applicable to social networks, making them similarly suited for PageRank
analysis.

Another prerequisite for convergence of the PageRank algorithm is that the underlying
Markov chain is ergodic, ie. that the random walker has a finite probability of re-visiting
every node. This is usually ensured by introducing the ‘teleportation step’; but even with
teleportation, unintentional effects occur on graphs with several connected components.
For example, a small component that is heavily interlinked (or even a single node linking
to itself) may have a disproportionate amount of PageRank bestowed on it, compared
to nodes in larger connected components. Increasing the parameter ε in equation (3.1)
ameliorates this problem, but does not solve it.

Empirical analysis of the web graph (Broder et al., 2000) showed that 91% of all
surveyed pages are part of a single giant weak component. This number is well in
agreement with random graph theory, which predicts that a random graph with more
than log |V | edges per node will consist of one ‘giant connected component’ of size Θ(|V |)

(see for example Janson et al., 1993).
If one takes the direction of hyperlinks into account, the largest strongly connected

component contains only 28% of all nodes, and that the probability of a path existing
from randomly chosen source and destination nodes is just 24%. This is a significant
deviation from PageRank’s premise that every page can be reached from every other
page. It is still unclear whether this structure is an artifact of the web, or whether it is
indeed typical for random directed power-law graphs. Preliminary results from Newman
et al. (2001) indicate that the ‘bow-tie structure’ of the web (a term coined by Broder
et al. (2000)) is close to that of a random directed power-law graph.

Similar analysis of social networks (from Newman, 2001) was conducted on scien-
tific collaboration networks. For a collaboration network extracted from the medline
database, 91% of all authors are part of a single connected component. Most models
treat social networks as undirected graphs, which accounts for the larger percentage of
nodes that are reachable from each other. No survey is available that examines directed
social networks; if the ‘bow-tie structure’ is indeed a characteristic of random directed
power-law graphs, it is also to be expected for social networks.

The similarities in structure of the web graph and social networks suggest the use
of PageRank as an importance measure for individuals in a social network. For the
web graph, PageRank has a very intuitive interpretation; namely, it is the amount of
time a random surfer would spend on a given page. For social networks, especially in
the context of information production, there is no such intuitive interpretation. One
might imagine a ‘book of knowledge’ that is passed along social links, for every author
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Table 6.1: PageRank scores for the coauthorship network of the sigir corpus. Scores are
normalized and are computed with a teleportation probability of ε = 0.3.

rank name PageRank

1. Bruce W. Croft 7.929
2. Clement T. Yu 4.716
3. James P. Callan 4.092
4. Norbert Fuhr 3.731
5. Susan T. Dumais 3.731
6. Mark Sanderson 3.601
7. Nicholas J. Belkin 3.518
8. Vijay V. Raghavan 3.303
9. James Allan 3.200

10. Jan O. Pedersen 3.135
11. Justin Zobel 2.992
12. Jian Yun Nie 2.982
13. Stephen E. Robertson 2.959
14. C. J. van Rĳsbergen 2.856
15. Peter Bruza 2.779
16. Alistair Moffat 2.757
17. Maristella Agosti 2.588
18. Yasushi Ogawa 2.544
19. Gareth J. Jones 2.493
20. Sung Hyon Myaeng 2.492

to look at while it is in his possession. Under this interpretation, the PageRank value
of an author would be the amount of time that this book is in his possession, ie. the
amount of time he has to copy material from the ‘book of knowledge’. (The hungarian
mathematician Paul Erdős frequently referred to ‘The Book’, an imaginary book which
contains all the most elegant mathematical proofs.)

In order to get an idea of the application of PageRank to a social network, it is instruc-
tive to compute the PageRank scores for a well-known social network. We computed
PageRank scores for a coauthorship network extracted from 25 years of sigir proceed-
ings (from 1978–2003); the twenty highest-ranking authors are listed in table 6.1. For
anyone working in information retrieval, most if not all of the names in the list will be
very familiar and will be recognized as authorities of the field. We also computed PageR-
ank scores for the social network extracted from a mailing list archive of the ‘origami-l’
mailing list; the highest-ranking individuals are listed in table 6.2 and will be equally
recognizable if one is familiar with the mailing list.

As far as we can conclude from these examples, PageRank is a measure that corre-
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Table 6.2: PageRank scores for the social network of the ‘origami-l’ corpus. Scores are
normalized and are computed with a teleportation probability of ε = 0.3.

rank name address PageRank

1. David Lister DLister891@. . . 8.831
2. Joseph Wu josephwu@. . . 8.377
3. Michael Ujin Sanders fightflipnfold@. . . 8.179
4. Jose Tomas Buitrago buitrago@. . . 7.452
5. Mark Kennedy KennedyM@. . . 6.898
6. Julia Palffy jupalffy@. . . 6.681
7. Candice Bradley candice.bradley@. . . 6.173
8. Lar deSouza fresco@. . . 5.943
9. Dorothy Engleman FoldingCA@. . . 5.007

10. Leong Cheng Chit leongccr@. . . 4.670
11. Dorothy Kaplan DORIGAMI@. . . 4.660
12. J. C. Neal jcneal@. . . 4.308
13. Joshua Koppel Skiffy1@. . . 4.285
14. Juan Carlo Rodrigues juancarlor@. . . 4.102
15. Rick Beech Ricknbeech@. . . 4.068
16. Zack Brown zbrown@. . . 4.067
17. ‘Nathan’ rockmanex6@. . . 3.905
18. Janet Hamilton mikeinnj@. . . 3.894
19. Marilyn Lewis Abbmackdes@. . . 3.880
20. Kenneth Kawamura MadHawn@. . . 3.847
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sponds with our intuitive sense of authority.

6.3.2 Applying PageRank to Social IR

For the implementation of PageRank, we use only the social network, that is, the graph
G[I]. We compute a PageRank score ri for every node i in the social network, as in
section 3.2. We ignore the fact that several disconnected components may exist in
the social network: Since they are small compared to the giant component, they can
be expected to contribute little to the document set, which means that documents
produced by individuals not in the giant component will only be relevant for very few
of the expected queries. We use a bias of ε = 0.3, further ameliorating the problem.

Another possibility is to employ topic-sensitive PageRank (Haveliwala, 2002) in order
to bias the PageRank computation against nodes in smaller components. The uniform
teleportation step is replaced by a non-uniform teleportation probability that depends
on the size of the component of which the target node is a member.

At this stage, one may choose to normalize the PageRank scores, so that r = 1; since∑
i∈I ri = 1, this is equivalent to multiplying each ri by |I|. Since we use PageRank in a

way that is invariant to normalization, we skip this step.
The score ri is then assigned to to the documents:

∀ d ∈ D ∀ i ∈ I : (i, d) ∈ E ⇒ rd = ri

If a document has more than one author, one has the option of either accumulating
the PageRank scores (rd =

∑
(i,d)∈E ri), or of chosing either the maximum, minimum, or

average of the PageRank scores of the authors. If the edges between nodes for individuals
and document nodes are non-uniform in weight, one can also incorporate this weight
information when transferring PageRank scores from authors to documents.

rd is a global score expressing the ‘importance’ of each document (as derived from
the ‘importance’ of its author or authors.) It needs to be combined with a conventional
text retrieval system in order to produce results that are relevant to a specific query.

6.3.3 Integrating PageRank

As described in section 6.2, we employ a modified vector-space model. For a query
q, the text retrieval system produces a set of relevant document Dq ⊂ D as well as a
score score(q, d) for every document. The inclusion of rd does not affect the result set
Dq; it only influences the ranking of the documents, enabling the user to find relevant
documents more quickly.

There are several models for combining PageRank with a text retrieval system. The
simplest method is to sort the documents d ∈ Dq by their PageRank score, and present
those with the highest rd to the user first. However, this method only works when a high
precision of the result set is ensured (as noted by Page et al., 1999). For example, when
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browsing an ontology or a document catalog, one may choose to order the documents in
one category by their score rd, in order to display the most important documents first.

A linear combination of relevance scores

α score(q, d) + βrd

offers a rich potential for optimizing the impact of the PageRank score in regard to
the relevance score. Because of the differing distributions of score and r, it may be
necessary to transform the PageRank scores. Zaragoza et al. (2004) suggest using log r

or (1 + exp(− log r + b))−1 instead of r, after normalizing the PageRank scores. The
parameters α, β and b need to determined by experimentation.

A very simple method of combining PageRank and relevance scores is

rd · score(q, d) (6.2)

For our purposes, this method has the advantage of not having tunable parameters,
and being invariant to normalization. We choose this method for the experiments in
chapter 7.

6.4 Spreading Activation Search

Spreading activation search (see section 3.6) is a very flexible formalism for expressing
search techniques on graphs. It is based on the notion of ‘activation energy’ which
spreads from node to node via outgoing edges. Spread of activation occurs in discrete
timesteps called ‘pulses’, after each of which the received activation is accumulated and
added to the residual activation from the last iteration.

A pure, unconstrained spreading activation search results in the complete network
being activated after a low number of pulses. Small-world networks such as social net-
works aggravate this effect, due to their low average path length. Therefore, the spread
of activation must be carefully limited and directed – mimicking a kind of inference
process.

In information retrieval systems, spreading activation search is often used in an inter-
active fashion: The user is presented with a set of activated nodes after each pulse, at
which point he can choose to stop the search process, to drop nodes not matching his
information needs, or to guide the activation towards a suitable direction. In difference,
automatic spreading activation search proceeds according to predetermined activation
rules and stops when a termination condition has been met. Due to our choice of evalu-
ation scenario (section 7), interactive spreading activation search is not a viable option.

6.4.1 Adjustments and Constraints

When applying spreading activation to social ir, we mimic an inference process, similar
to the process one would apply to infer the authority of an author from his collaborators:

49



Chapter 6 Techniques

individuals

documents

query

?

Figure 6.2: An associative network models the relationship between users as well as
between items of content. Query nodes (denoted by ‘?’) are transient nodes
introduced into the network to express the relevance of a document as regards
a query.

• The initial relevance of a document as regards a query is determined using an
automatic information retrieval system; we use a system based on the vector-space
model as in section 6.2.

• Authors of relevant documents are presumed to be experts as regards the query
topic.

• An author is presumed to be authoritative if he has social ties with many experts.
Likewise, he is presumed to be authoritative if he has written many documents
about the topic.

• The relevance of a message depends on both its initial relevance (as estimated by
a text retrieval system) and the authority of the author.

We implement spreading activation search on an associative network as in figure 6.2.
The user’s information needs are represented by a query node (denoted by ‘?’ in fig-
ure 6.2), which stores the query keywords. The underlying text retrieval system esti-
mates the relevance of the documents as regards the query keywords and adds edges
from the query nodes to the document nodes accordingly. The edges are weighted ac-
cording to the relevance score produced by the underlying retrieval system and are in a
range between 0.0 and 1.0.
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The query node is initially activated with a fixed amount of activation energy. Spread-
ing activation proceeds according to the following rules and constraints:

• We constrain spread to nodes with a distance of two links or less to the initial
query node. This constraint allows activation of neighbouring document nodes of
the query node (with a distance of one) and their author nodes (with a distance
of two).

• Spreading terminates after four iterations. Combined with a distance constraint
of two, four iterations spread the activation energy from the query node to the
author nodes, and back to the document nodes.

• In the pre-adjustment stage, we use full strength spreading, as this type of pre-
adjustment rewards nodes with a high degree: Nodes with a high fan-out serve
as multipliers and increase the amount of activation spreading through the net-
work. We do not use equal distribution spreading since it conserves the amount
of activation energy, and penalizes nodes with a high fan-out.

• We use an activation decay of 0.1: After each pulse, the residual activation of a
node is reduced to one tenth before adding it to the incoming activation energy.
This factor limits the effect of the initial activation.

Because the spreading activation algorithm does not distinguish between node types,
we use custom parameters in two of the five iterations:

• During the first pulse, we use an activation decay of 0.0. At this time, only the
query node is activated, and activation spreads from the query node to the initial
document nodes. By using an activation decay of 0.0, we ensure that the query
node’s activation is 0.0 after the first pulse, and that it does not re-activate the
initial document nodes.

• During the third pulse, we constrain spreading to edges between author nodes.
At this stage, activation has arrived at author nodes, and activation energy from
multiple messages by the same author has been accumulated. By constraining
spread to author nodes in this activation, we emphasize the importance of the
social network.

After the fourth pulse, the initially activated documents are returned, sorted by their
activation level.

The described adjustments and constraints are chosen to express an intuitive notion
of social search. Different applications will require a different set of constraints. The
large number of possible constraints and parameters make it infeasibel to search through
this configuration space in a systematic manner. Small changes in parameters or the
stage at which adjustments and constraints are applied can have a profound effect on
the resulting activation levels. Whether other parameter sets for social search exist with
a similar or better performance is subject to extensive experimentation.
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6.4.2 Example

A schematic depiction of the spread of activation through the associative network is in
figure 6.3. The domain is similar to the one described in the example in section 5.1: It
contains five individuals i1, . . . , i5 and five documents d1, . . . , d5. The first individual
i1 has social ties with the next three individuals i2, i3 and i4, whereas i5 has no social
ties with another individual. A query node q points to all five documents, and every
document is associated with its author.

We see that activation spreads from the query node to the document nodes in the first
iteration, after which the activation of the query node drops to zero. After the second
pulse, activation arrives at author nodes; in the third iteration, document nodes retain
part of their activation level, while activation accumulates in the dominant nodes of the
social network. In the fourth iteration, this accumulated activation is spread back to
the document nodes.

As described in the last subsection, we use an activation adjustment in the post-
adjustment phase of f2−4

a (x) = 0.1x. In the first iteration, we use f1
a(x) ≡ 0. The

distance constraint is not active in the example network, as all nodes have a distance of
two or less from the query node.

• Initially, the only activated node is the query node q with an activation energy of
100:

a0
q = 100

• In the first iteration, the full activation energy is spread from the query node
q to the document nodes d1, . . . , d5. No preadjustments are active, causing the
document nodes to receive the full activation energy. Because an activation decay
of 0.0 is active in this iteration, the activation of the query node drops to zero,
causing it to become deactivated:

a1
q = f1

a(a0
q) = 0

a1
d1

= a0
q = 100

...

a1
d5

= a0
q = 100

• In the second iteration, the energy of the document nodes d1, . . . , d5 is spread
to their respective author nodes i1, . . . , i5. Because an activation decay of 0.1 is
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Figure 6.3: Schematic depiction of activation spread through the associative network.
Numbers in parentheses are the activation level of the node in this iteration;
red arrows signify activated edges.
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active, the energy of the document nodes drops to one tenth of its value:

a2
i1

= a1
d1

= 100

...

a2
i5

= a1
d5

= 100

a2
d1

= f2
a(a1

d1
) = 0.1 · 100 = 10

...

a2
d5

= f2
a(a1

d5
) = 0.1 · 100 = 10

• In the third iteration, spread is constrained to author nodes: i1 receives additional
activation from i2, i3 and i4, in addition to its initial activation of ai4 reduced
to one tenth. The activation of document nodes drops to one tenth, as does the
activation of all other nodes:

a3
i1

= a2
i2

+ a2
i2

+ a2
i2

+ f3
a(a2

i1
)

= 100 + 100 + 100 + 0.1 · 100 = 310

a3
i2

= a2
i1

+ f3
a(a2

i2
) = 100 + 0.1 · 100 = 110

...

a3
i4

= a2
i1

+ f3
a(a2

i4
) = 100 + 0.1 · 100 = 110

a3
i5

= f3
a(a2

i5
) = 0.1 · 100 = 10

a3
d1

= f3
a(a2

d1
) = 0.1 · 10 = 1

...

a3
d5

= f3
a(a2

d5
) = 0.1 · 10 = 1

• In the last iteration, energy is spread from the author nodes back to the document
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nodes. Author nodes also receive activation from document nodes:

a4
i1

= a3
i2

+ a3
i3

+ a3
i4

+ a3
d1

+ f4
a(a3

i1
) = 110 + 110 + 110 + 1 + 0.1 · 310 = 362

a4
i2

= a3
i1

+ a3
d2

+ f4
a(a3

i2
) = 310 + 1 + 0.1 · 110 = 322

...

a4
i4

= a3
i1

+ a3
d4

+ f4
a(a3

i4
) = 310 + 1 + 0.1 · 110 = 322

a4
i5

= a3
d5

+ f4
a(a3

i5
) = 1 + 0.1 · 10 = 2

a4
d1

= a3
i1

+ f4
a(a3

d1
) = 310 + 0.1 · 1 = 310.1

a4
d2

= a3
i2

+ f4
a(a3

d2
) = 110 + 0.1 · 1 = 110.1

...

a4
d4

= a3
i4

+ f4
a(a3

d4
) = 110 + 0.1 · 1 = 110.1

a4
d5

= a3
i5

+ f4
a(a3

d5
) = 10 + 0.1 · 1 = 10.1

We see that spreading activation search achieves our desired result of promoting au-
thors with many social links, while penalizing solitary authors.

6.5 Summary

We describe an associative network model for one concrete information retrieval task,
namely keyword-based retrieval on a domain where author information and a social
network between authors is available. Vector-space retrieval is used as the underlying
text retrieval method, and is used as a baseline performance measure in evaluation.

Two techniques are described, one based on a global authority measure for the social
network, and one based on exploring local links in the associative network.

The global technique is based on the PageRank authority measure; PageRank scores
are computed for the social network and combined with relevance scores from vector-
space retrieval to determine the ranking of results. The suitability of PageRank as a
measure of authority is demonstrated on two example networks.

Spreading activation search is used as a local technique; it is based on exploring the
social neighbourhood of a relevant document’s author. An intuitive method of assessing
a document’s relevance based on the author’s social network is given. This method is
implemented as a set of constraints and adjustments for spreading activation search.
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Evaluation

In this section, we evaluate the effectiveness of social retrieval techniques, as described
in chapter 6, in comparison with conventional retrieval techniques. Due to the absence
of standard corpora with suitable characteristics, we use two locally compiled corpora.

We evaluate the techniques in a known-item retrieval setting and compare them to the
baseline technique described in section 6.2 using the metrics average rank and inverse
average inverse rank as in section 3.7.2. Evaluation based on the precision and recall
metrics as in section 3.7.1 requires labour-intensive screening of the complete corpora, as
well as the collaboration of several experts in the domain of the corpora. In comparison,
a known-item retrieval setting reduces the amount of manual labour required and allows
a semi-automatic selection of items, as described in the following sections.

By comparing with a baseline technique on the same index, we eliminate external
factors that may account for differences in performance; this allows us to gauge the
impact of social retrieval techniques on retrieval performance.

7.1 Corpora

The domain model for social information retrieval as in figure 6.1 requires that a social
network between individuals is present in the evaluation corpus, as well as associations
between individuals and documents. In this section, we describe two corpora that sat-
isfy these requirements and which are used for evaluating the effectiveness of social ir
techniques. We explain how a full-text index is constructed and how the social network
between the authors of the document is extracted. We also include statistical charac-
teristics of the corpora and of the extracted social networks. We examine whether the
social networks display the expected characteristics from statistical network analysis as
described in section 3.4.

7.1.1 Mailing List Archives

The mailing list corpus contains messages from the ‘origami-l’ mailing list1 archive from
the years 1997–2005 and was collected by the author. The full source of each message

1http://origami.kvi.nl/, last visit on 2005/05/02.
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in rfc 822 format (Crocker, 1982) is available. For evaluation, two different subsets of
the corpus are used, one containing messages from 2000–2005, and one from 2004.

For the full-text index, the following strategy is used:

1. Both the message body and the Subject: line are included in the full-text index.
When choosing evaluation queries as in section 7.2.1, this ensures that the desired
document for known-item retrieval is found in any case.

2. Heuristics are used to detect common types of markup for signatures and quoted
text; these parts are removed. This step ensures that only content actually pro-
duced by the author of the messages is included in the full-text index.

3. Remaining content is tokenized and lowercased.

4. Stopwords are removed, using a stopword list by Jacques Savoy2.

5. For statistical purposes, bi- and trigrams are extracted; they are not used for
searching.

In addition to the full-text index, an associative network is constructed from the
messages:

• An author node is constructed for each email address. No effort is made to reconcile
different email addresses of one person.

• Every message is linked to its author, and every author is linked to his messages.

• Messages are linked to their follow-ups, and vice-versa. Whether a message is
a follow-up to another is determined from the In-Reply-To: and References:
header lines. No attempt is made to match messages to their follow-ups by textual
means.

• Authors are linked to each other based on how often they respond to one another’s
messages.

Statistics of the two subsets are listed in table 7.1; the degree distribution for the
social network is in figure 7.1. When calculating statistics for the social network, we use
the underlying undirected graph, ie. we treat all social links as undirected links. This
is in accordance with the usual techniques in social network analysis, which are mostly
concerned with undirected graphs.

The social networks extracted from the corpus share typical characteristics with other
social networks examined by Newman (2001). The giant connected components comprise
about 70% of all nodes; less than the more than 90% commonly cited for the network
of movie actors or the coauthorship network for the medline database, but on par with

2http://www.unine.ch/info/clef/englishST.txt, last visit on 2005/08/17.
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Table 7.1: Statistical characteristics of the ‘origami-l’ corpus.

2000–2005 2004
no. of messages 44108 4411
no. of email addresses 1834 464
mean neighbours per address 7.959 4.838
exponent γ 1.093 1.078
size of giant connected component (gcc) 1271 331

as percentage [%] 69.3 71.3
size of next-largest component 2 2
average shortest path length in gcc 2.983 3.108
diameter of gcc 9 6
mean clustering coefficient 0.647 0.578

smaller networks. The size of the next-largest weak components is very small compared
to the size of the largest component. The average shortest path length in the giant
connected component is very low at about three, and the diameters are 6 for the smaller
corpus and 9 for the larger corpus. This makes the social network of the mailing list
corpus a very small world.

The degree distribution seems to follow a power law with an exponent of γ ≈ 1.1,
similar to smaller coauthorship networks surveyed by Newman (2001). A graphical plot
of the degree distribution is in figures 7.1 and 7.2. The regression curves were fitted to
the data using nonlinear least squares regression.

7.1.2 SIGIR Corpus

The ‘sigir corpus’ is a collection of conference proceedings of the annual acm sigir
(Special Interest Group on Information Retrieval) conference from 1978–2003.

This corpus contains author and title information about every document published
in the proceedings of the sigir conference, as well as a full-text index. References
to other documents in the corpus are also present. The database containing author
names, titles, abstracts and year of publication was originally prepared for Smeaton
et al. (2002) and was graciously provided by the authors. It was enhanced locally;
citation information was extracted from the full text of the documents using information
extraction techniques.

For the full-text index, electronic versions of the proceedings (available in PDF format)
are converted to plain text. Plain text files are tokenized and lowercased; stopwords are
removed as in section 7.1.1. Titles and abstracts are retrieved from the database and
added to separate fields of the full-text index.

The social network of this corpus is the coauthorship network: Two authors are pre-
sumed to have a social relation if they authored a publication together. This method of
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Figure 7.1: The distribution of vertex degrees for the social network of the ‘origami-l’
corpus. Vertices with degree δ(v) = 0 are omitted in the graph. The red line
is a regression curve for the power-law distribution Pr(δ(v) = k) ∼ k−γ with
γ as in table 7.1.
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Figure 7.2: The distribution of vertex degrees for the social network of the ‘origami-l’
corpus, plotted on a log-log scale; again, vertices with degree δ(v) = 0 were
omitted. The logarithmic scale makes it evident that the graph follows a
power-law distribution, as the regression curve becomes a straight line. The
slope of the regression curve is the same as the exponent γ in table 7.1.
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Table 7.2: Statistical characteristics of the sigir corpus.

no. of documents 1041
no. of authors 1397
mean collaborators per author 2.863
exponent γ —
size of giant connected component (gcc) 312

as percentage [%] 22.3
size of next-largest component 146
average shortest path length in gcc 6.303
diameter of gcc 16
mean clustering coefficient 0.902

constructing the social network implies that the network is undirected.
As can be seen from the statistics for the sigir corpus in table 7.2, the corpus is

rather small at just over one thousand documents; furthermore, it contains more au-
thors than documents. Each author has on average less than three collaborators. The
giant connected component is fairly small, comprising 22% of the coauthorship graph;
this figure is markedly lower than the corresponding figure for the mailing list corpus,
and also lower than the figures reported by Newman (2001). We presume that this is
due to the small size of the corpus. Average shortest path length and diameter of the
giant connected component are higher than the figures for the mailing list corpus, but
comparable to figures reported for larger coauthorship networks.

The degree distribution of the social network does not appear to follow a power law;
instead, the probability of a vertex having degree k appears closer to

Pr(δ(v) = k) ∼ exp
(

−
k

kc

)
where kc is a constant. This may result from the small size of the corpus: Newman
(2001) observed degree distributions for smaller social networks that were closer to a
power law with an exponential cutoff, that is

Pr(δ(v) = k) ∼ k−γ exp
(

−
k

kc

)
;

He speculates that it is a result of the underlying distribution following a power law,
with an external constraint that limits the maximum degree of a node. In our case, the
constraint arises from the limited time frame and the small number of documents: An
author can only have a limited number of publications in the sigir proceedings, and
thus can only collaborate with a limited number of other individuals. As can be seen
from figure 7.3, the degree distribution can be adequately explained using exponential
decay (with kc ≈ 2.9); the power law hardly seems to affect the distribution.

60



Chapter 7 Evaluation

5 10 15 20 25 30 35
0

100

200

300

vertex degree δ(v)

ve
rt

ic
es

w
it

h
de

gr
ee

δ
(v

)

(a) linear scale

• •
•
• •

•

•
•
•

••
•

•

•
•••
•
••• •

1 2 5 10 20

1
2

5
10
20

50
100
200

500

vertex degree δ(v)

ve
rt

ic
es

w
it

h
de

gr
ee

δ
(v

)

(b) log-log scale

Figure 7.3: The degree distribution of the sigir corpus does not appear to follow a
power law; it seems closer to an exponential distribution. Vertices with
degree δ(v) = 0 are omitted in the graph. The red line is a regression line
for an exponential distribution Pr(δ(v) = k) ∼ exp(− k

kc
) with kc ≈ 2.9.

7.2 Methodology for Choosing Search Queries

Choosing representative search queries and relevant documents is a central part of the
known-item retrieval scenario; it is usually performed by experts in the subject mat-
ter with a reasonably complete knowledge of the documents in the corpus. We extract
known items and search queries in a semi-automatic manner, due to a limited amount
of manpower available for the evaluation. Since objective criteria are used for choosing
search queries, we prevent a personal bias from affecting the evaluation results. Where
a human judgement is necessary, two different experts choose relevant documents inde-
pendent from each other.

7.2.1 Mailing List Archives

For choosing appropriate query terms for known-item retrieval in the case of mailing list
archives, the following strategy is used:

From the Subject: lines of email messages, frequent bi- and trigrams are extracted.
Subject: lines are a good indicator of user information needs, as many threads on a
mailing list start with a question, and the question is usually summarized in the subject.
Bi- and trigrams are especially apt candidates, because ‘real-world’ queries have been
found to average between two and three words (Silverstein et al., 1999).
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Selecting n-grams by frequency alone is sub-optimal, as some frequent n-grams corre-
late highly with the author of the containing messages (for example, periodic announce-
ments usually contain the same Subject: line and are by the same author.) In order to
remove these n-grams, the mutual information of the occurence of a specific n-gram in
the Subject: line and the author of the messages is determined.

Mutual Information, also called information gain in the context of machine learn-
ing, measures the amount of information shared by two random variables. The mutual
information of two random variables X and Y is usually defined as

I(X, Y) =
∑

x

∑
y

Pr(X = x, Y = y) log2

Pr(X = x, Y = y)

Pr(X = x)Pr(Y = y)

An equivalent definition is (Hamming, 1980)

I(X, Y) = H(X) − H(X|Y) = H(Y) − H(Y|X)

where the entropy of X is

H(X) = −
∑

x

Pr(X = x) log2 Pr(X = x)

and the conditional entropy of X given Y is

H(X|Y) =
∑

y

Pr(Y = y)H(X|Y = y)

A high mutual information between the occurrence of a specific n-gram and the author
of the containing messages is an indicator for an idiom that is used exclusively by few
authors, and is not a good query phrase for evaluation. A desirable n-gram for use
as a query phrase therefore has a low mutual information with the author, and a high
document frequency at the same time. We sort n-grams by information gain divided by
the frequency and use the n-grams with the lowest score for evaluation:

score(n-gram) =
I(n-gram, author)

df(n-gram)
(7.1)

Figure 7.2.1 shows the correlation between messages containing a specific n-gram
and the author of the messages, as regards the document frequency. As the document
frequency decreases, the correlation decreases as well, since distributions become more
ordered. In the figure, one can discern a number of n-grams that have an unusually high
correlation to one specific author.

Table 7.3 lists the n-grams with the lowest score for the Subject: lines, for the
‘origami-l’ corpus for 2004. Terms printed in italics are chosen as query terms for
known-item retrieval. In the case of overlap between n-grams, the longest n-gram is
chosen.
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Table 7.3: n-grams from Subject: headers, sorted by score. Terms in italics are selected
as query terms for known-item retrieval. (data: ‘origami-l’ archives for 2004,
scores as in equation 7.1.)

n-gram df(n-gram) score(n-gram)× 10−4

origami sighting 98 5.148
crease patterns 42 5.884
5 favorite 36 6.966
favorite models 36 6.966
5 favorite models 36 6.966
rose polygon 20 7.143
art craft 36 7.158
roses project 15 7.618
cp short 26 7.692
cp short cruel 26 7.692
current model 15 7.704
favorite current 15 7.704
favorite current model 15 7.704
cruel punishment 29 7.842
short cruel 29 7.842
short cruel punishment 29 7.842
collector accumulator 15 8.122
folding clothes 11 8.161
tension folding 13 8.199
rolling ball 10 8.214
identify image 12 8.321
nick robinson 21 8.326
teaching origami 12 8.341
lang origami 11 8.595
fish model 17 8.612
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Figure 7.4: Measuring the correlation between the occurence of a specific n-gram in the
subject of emails and the author of the message. (data: ‘origami-l’ archives
for 2004)

For each of the ten queries, one message is chosen as the ‘known item’, the objective
of this search: Only messages from 2004 are considered as relevant, and only those
messages are assessed that actually contain the sequence of query terms in the Subject:
line. The criteria for relevance are selected to mimic a searcher looking for an item he
has seen before: He would probably remember the subject of the message, and from the
pool of messages with a matching subject, the most memorable one is chosen.

The items to be retrieved are chosen by the author, who is an expert in the subject
matter, and by a complete novice as regards paperfolding. Using two different relevance
assessments allows us to evaluate whether a social ir system caters more to novice users
who desire more general results of high quality, but know next to nothing about the
authors, or expert users who may have more specific interests, and can judge a person’s
authority within the community without assistance of the social ir system.

7.2.2 SIGIR Corpus

Due to the small size of the sigir corpus, the statistical approach for choosing search
queries used in the section 7.2.1 is not applicable. Instead, we use the following approach:

We determine the number of citations for a document in the corpus and use this as a
measure of importance of a document within the corpus. This is a very simple method
of citation analysis; it ignores important factors such as citations outside the corpus or
the publication date of the cited document and the citing documents. The result are
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Table 7.4: The ten most-cited documents in the sigir corpus, with query phrases derived
from the document title

document query phrase citations

A language modeling approach to
information retrieval (Ponte and Croft,
1998)

language modeling 13

Reexamining the cluster hypothesis:
scatter/gather on retrieval results
(Hearst and Pedersen, 1996)

scatter gather 11

A hidden Markov model information
retrieval system (Miller et al., 1999)

hidden markov model 11

Relevance feedback revisited (Harman,
1992)

relevance feedback 11

Pivoted document length normalization
(Singhal et al., 1996)

document length normalization 11

Automatic phrase indexing for
document retrieval (Fagan, 1987)

automatic phrase indexing 10

Information retrieval as statistical
translation (Berger and Lafferty, 1999)

statistical translation 10

Inference networks for document
retrieval (Turtle and Croft, 1990)

inference networks 9

Probabilistic Models of Indexing and
Searching (Robertson et al., 1981)

probabilistic models 9

Towards interactive query expansion
(Harman, 1988)

interactive query expansion 8

further biased by inadequacies in the information extraction methods used to extract
the citations.

We select the ten most-cited documents as the most influential (or authoritative)
documents in the corpus, and use those as ‘known items’ in a known-item retrieval
setting. Query phrases are determined from the title of the publication. Table 7.4 lists
the selected documents, as well as query phrases and the number of citations. The most-
cited publications include documents from 1981–1999; we surmise that newer documents
have not been available long enough to acquire a significant number of citations.

7.3 Evaluation Tasks

This section contains results from known-item retrieval experiments on the two corpora
described in section 7.1, using queries and documents chosen as described in section 7.2.
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Rankings are not necessarily unique, as they rely on sorting according to a numerical
score. In case of ambiguities, we report the ranks and derived metrics as intervals.

7.3.1 Known-item Retrieval on Mailing List Data

Detailed results from these experiments are in tables 7.5 and 7.6.
For items chosen by an expert searcher, the combination of PageRank and the vector-

space model performs better than the vector space model alone for four of ten queries on
the 2004 corpus; in one case, the result is a draw. While the average rank of the found
documents increases for PageRank search, the inverse average inverse rank decreases:
The average rank increases by 21.7%2.4, but the inverse average inverse rank decreases
by 6.2% ± 0.5. This means that some documents are found considerably later than
with vector-space search, but for those documents in the earlier parts of the result
list, PageRank combined with vector space performs better. This effect is even more
pronounced on the 2000–2005 corpus, where the average rank increases by 69.9%± 2.3,
but the inverse average inverse rank decreases by 24.6%±0.5. On the 2000–2005 corpus,
the combination performs better for six out of ten queries.

For the novice searcher, results are less pronounced. On the smaller corpus from
2004, both the average rank and inverse average inverse rank decrease (average rank
by 13.1% ± 1.5, IAIR by 1.5% ± 0.3), whereas on the larger corpus, the average rank
is identical the same, but the IAIR increases sharply (by 58.4% ± 0.4.) On the smaller
corpus, PageRank times vector space performs better for five out of ten queries, with
one draw; for the larger corpus, it performs better for four out of ten queries, also with
one draw.

This mirrors the results from Page et al. (1999), who report that ‘the benefits of
PageRank are the greatest for underspecified queries’ and that ‘for more specific searches
where recall is more important, the traditional information retrieval scores and the
PageRank should be combined.’ The very nature of the known-item retrieval task places
an emphasis on recall, since the objective is finding one specific document instead of
just one of several that satisfy the information need.

Spreading activation search shows a clear improval on the smaller corpus with mes-
sages from 2004: Using the combination of adjustments and constraints described in
section 6.4 lowers the inverse average inverse rank by 49.5%±0.3 for the expert searcher,
and by 18.0% ± 0.2 for the novice searcher. Average rank increases by 6.8% ± 2.1 for
the expert searcher and decreases by 29.1%± 1.2 for the novice searcher. Development
of average rank and inverse average inverse rank as compared to the baseline method
mirrors the trends found for social search using PageRank.

In difference to our results for social search with PageRank, the trends for spreading
activation search do not carry over to the larger corpus with messages from 2000–2005.
For the expert searcher, the average rank and inverse average inverse rank double when
using spreading activation search (average rank 44.85 ± 0.05 versus 24.4 ± 0.3 for the
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baseline method, inverse average inverse rank 14.018 ± 0.089 versus 8.787 ± 0.040 for
the baseline method.) Comparable results are achieved for the novice searcher (average
rank 52.9 versus 39.35± 0.35 for the baseline, inverse average inverse rank 14.358 versus
4.962± 0.013 for the baseline.)

As noted by Crestani (1997), the effectiveness of spreading activation search depends
crucially on the structure of the associative network. In particular, nodes with a high
degree, which are found more frequently in the larger subset of the mailing list corpus,
often need special treatment. Further experiments are needed to determine suitable
procedures for the treatment of nodes with a high degree in the social network.

7.3.2 Known-item Retrieval on the SIGIR Corpus

Known-item retrieval on the sigir is performed using the documents and query terms
from table 7.4; detailed results are found in table 7.7. Three different scenarios are
evaluated, using terms from the title of the documents, terms from the abstracts, and
a search over the full text of the documents. When searching the abstracts, the desired
document is not found in two out of ten cases (denoted by ‘—’ in the corresponding
cells of the result table), because the abstract does not contain the query terms taken
from the document title.

No improvement can be detected in any of the scenarios when comparing social search
using PageRank to the baseline method: at best, the average rank remains the same,
at worst, it increases by 138.4%, while the inverse average inverse increases by at least
20.3%± 20.5 and at most 41.4% when using social search. Similar results were achieved
using spreading activation search.

When reviewing the result lists for the experiments on the full-text index, we find
that in all cases where the known item is not at the top of the result list, there is a
publication by W. Bruce Croft at the top – who has the highest PageRank in the social
network, as we see from table 6.1. In other words, we seem to have constructed a highly
effective search engine for finding publications by W. Bruce Croft.

One interpretation for this phenomenon is that PageRank identifies hubs in the social
network. Hubs are important to the network in their role as ‘multipliers’ or disseminators
of information. Bruce Croft is an example of a very successful multiplier: He co-authored
thirty-six publication in twenty-five years of conference proceedings, and collaborated
with thirty-three authors on a large variety of topics.

By selecting documents based on how often they are cited, we bias the desired docu-
ments away from multipliers and towards innovators: When selecting which publication
to cite, one often goes back to the work originally introducing an idea, neglecting to cite
subsequent work that popularized the topic.

Indeed, Granovetter (1973) notes that innovators are often at the margin of the social
network, because they do not conform to the norms of the community – which may
be a trait that allows them to innovate. The early adopters of a new idea however are
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Table 7.6: Known-item retrieval on mailing list data, using messages from 2000–2005.
Columns labelled ‘VS’ contain ranks from vector-space search as in section 6.2,
columns labelled ‘PR×VS’ contain ranks scored by pagerank times vector
space score as in equation 6.2 in section 6.3. Rows ‘rank change’ and ‘IAIR
change’ contain the change compared to the baseline method ‘VS’ in percent.

method: VS PR×VS VS PR×VS
searcher: expert expert novice novice

crease patterns 71± 0 279± 0 167± 1 145± 0

5 favourite models 34.5± 0.5 29± 0 48.5± 0.5 51± 0

rose polygon 5± 0 3± 0 5± 0 3± 0

art craft 40.5± 0.5 11± 0 89± 0 117± 0

roses project 15.5± 0.5 13.5± 0.5 1± 0 3± 0

favourite current model 8± 0 22± 0 8± 0 22± 0

short cruel punishment 25.5± 1.5 29± 0 20± 2 12± 0

collector accumulator 9± 0 2± 0 13± 0 13± 0

folding clothes 2± 0 3± 0 2± 0 3± 0

tension folding 33± 0 23± 0 40± 0 27± 0

rank: 24.4± 0.3 41.45± 0.05 39.35± 0.35 39.6± 0

rank change [%]: +69.9± 2.3 +0.6± 0.9

IAIR: 8.787± 0.040 6.697± 0.012 4.962± 0.013 7.86± 0

IAIR change [%]: −24.6± 0.5 +58.4± 0.4
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well-connected individuals at the center of the social network: If no hub in the network
lends authority to a new idea and serves as a multiplier, it is unlikely to spread through
the social network at all.

Examining the first-ranked documents, we find that in five out of eight times, the de-
sired document is listed in the bibliography; in one case, there is a citation trail of length
two between the first-ranked document and the desired document. This substantiates
our claim that the highest-ranking individuals serve as disseminators of information.

We conclude that social ir is not applicable in this evaluation setting. There are several
reasons limiting the effectivity of social ir in this setting, caused both by characteristics
of the corpus and by the evaluation methodology: It is widely believed that the benefits
of link analysis for information retrieval are greatest for underspecified queries, combined
with a large document collection containing many relevant documents that differ widely
in quality. Both conditions are violated by the sigir corpus, since it is very small, focused
on a narrow domain, and contains only high-quality documents. The queries are not
under-specified, but are chosen to match one specific document. The methodology of
selecting known documents is biased towards innovators, whereas the social retrieval
techniques are biased towards multipliers.

7.4 Summary

Two techniques for social search, one based on PageRank and one based on spreading
activation search, are compared to conventional vector-space search in a known-item
retrieval task. Evaluation is carried out on two corpora: A mailing list archive con-
taing messages from the years 2000–2005 from the ‘origami-l’ mailing list, and a set of
publications from the proceedings of the acm sigir conference from 1978–2003.

Query phrases for evaluation on the mailing list corpus are derived from frequent bi-
and trigrams in the Subject: lines of the messages; known items are selected by human
experts. For the corpus of conference proceedings, the most-cited documents in the
corpus are selected as known items; query phrases are derived from their titles.

Two evaluation metrics are used for comparing the performance of the retrieval meth-
ods: average rank and inverse average inverse rank, as in section 3.7.2.

On the mailing list corpus, the social retrieval method based on PageRank shows
a marked improvement of inverse average inverse rank in three out of four scenarios;
social search with PageRank decreases the average rank in one out of four scenarios.
Spreading activation search halves the inverse average inverse rank on a subset of the
mailing list corpus which contains messages from one year, and decreases the average
rank by one fifth in one scenario. On the full mailing list archive, no improvement can
be detected when using spreading activation search, as regards both average rank and
inverse average inverse rank.

On the corpus of conference proceedings, neither social search technique shows an
improvement. It is conjectured that this is an effect of the method for choosing evaluation
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items, in combination with the characteristics of the corpus.
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Chapter 8

Implementation Notes

This chapter describes the prototype system used for evaluation in chapter 7. We de-
scribe design critera, the technology used for implementation, the components of the
system, and the configuration files.

8.1 Design Criteria

The stated purpose of the prototype system is to enable evaluation of different retrieval
techniques, with a minimum of effort for implementing new approaches that fit the data
model.

This purpose led to the following functional requirements:

• The system provides a full-text index with a vector-space search algorithm.

• The system provides methods for storing, retrieving, and manipulating an asso-
ciative network.

• The associative network implementation is suitable for implementing spreading
activation search.

• The system is suitable for evaluation using the evaluation metrics in section 7.

• Following from the last point, the system is implemented as a batch retrieval
system; only preliminary interactive facilities are provided.

The following non-functional requirements also influenced design decisions:

• The system should be modular and easily extensible to allow for experimentation
with a variety of different approaches.

• Platform independence is an important factor, as it allows researchers using a
variety of platforms to develop and use the prototype.

• The system should be implemented using standard open-source components. Using
standard components speeds up development of the prototype. It also fosters
collaboration between researchers, who have access to the same, well-documented
tools.
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8.2 Technology

The prototype system is written in the Java language, using the j2se 1.4.2 sdk. In
addition to the components provided by the sdk, the following open-source components
were used:

• Apache Lucene1 (see Gospodnetić and Hatcher, 2005) is a text search engine library
which implements the vector-space model (see section 6.2). Lucene stores the
index in a set of files; the index is used for storing both the full-text index and the
associative network.

• jung – Java Universal Graph/Network Framework2 (see O’Madadhain et al., 2005)
is a library for modeling, analyzing and visualizing a wide variety of graphs. The
classes used in the prototype for representing the associative network are directly
derived from appropriate jung classes; we also use jung’s PageRank implementa-
tion as well as statistics.

• Sun JavaMail3 is a framework for mail and messaging applications; it is used for
parsing email archives in rfc 822 format.

• Colt4 is a set of libraries for high-performance scientific and technical computing.
It is used in the prototype for linear algebra, matrix arithmetic and descriptive
statistics.

• jdom5 is a library for reading, manipulating and writing xml documents; it is
used in the prototype for processing configuration files.

In general, we tried to find open-source components for common tasks, in order to
reduce development time.

8.3 Components

The prototype is subdivided into several components, which are described in this chap-
ter. It contains components for modeling the associative network, for reading a network
from external storage, and for searching the network. Indexing and extraction of the net-
work is separated from the storage and retrieval architecture. Evaluation is performed
by dedicated classes.
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SparseVertex SparseGraph

SearchGraph

+ SearchGraph(config)+ SearchNode(type, id)

SearchNodeFactory

+ SearchNodeFactory(config)

DirectedSparseEdge

DirectedSearchEdge

+ DirectedSearchEdge(from, to)

SearchNode

+ SearchGraph(config, load?)+ getFactory()
+ setFactory(factory)

+ setId(id)
+ getId()

+ getType()
+ setType(type)
+ putDatum(key, value)
+ getDatum(key)

+ getFactory()

# factory: SearchNodeFactory

+ setWeight(weight)
+ getWeight()

# factory: SearchNodeFactory

Figure 8.1: Class diagram of graph architecture

8.3.1 Associative Network

The associative network implementation of the prototype is directly derived from the
corresponding classes for sparse graphs of the jung framework; see figure 8.1 for a class
diagram. For a description of jung’s graph model, we refer to the documentation on
jung’s web page; a conceptual overview is given in (O’Madadhain et al., 2005).

Nodes in the associative network are represented by the SearchNode class; they are
uniquely identified by a type string and an integer id. In addition to the standard mech-
anisms for attaching data to classes provided by jung, we provide a simlar mechanism
for storing explanatory data – for example the name of the person, or the title of a
document.

We use directed, weighted edges for representing the network and model them using
the class DirectedSearchEdge.
SearchGraph is the central class modelling the associative network. A SearchNode

must always be associated with a SearchGraph, and a DirectedSearchEdge may only
connect nodes belonging to the same SearchGraph.

The storage component (in section 8.3.2) uses the Factory pattern for loading parts
of the associative network from external memory. A SearchGraph and SearchNodes are

1http://lucene.apache.org/java/, last visit on 2005/10/18.
2http://jung.sourceforge.net/, last visit on 2005/10/18.
3http://java.sun.com/products/javamail/, last visit on 2005/10/18.
4http://dsd.lbl.gov/~hoschek/colt/, last visit on 2005/10/18.
5http://www.jdom.org/, last visit on 2005/10/18.
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always associated with the factory that produced them.
A SearchGraph may be initialized with a configuration file in xml format, in which

case factories for the types declared in the configuration file will be created automati-
cally; for the format of the configuration files see section 8.4. The storage component
supports lazy loading of nodes; the boolean load argument of the SearchGraph con-
structor determines whether the complete graph is loaded into memory at initialization
time, or whether it is loaded on demand.

8.3.2 Storage

The storage component (figure 8.2) is centered around the concept of a ‘backing store’
that provides access to parts of the associative network stored in external memory. A
backing store provides methods to fetch a new node identified by its type and its id, as
well as fetch the neighbours of a node. One backing store may provide access to several
different types of nodes.

Two implementations of a backing store are available: A JDBCBackingStore provides
access to nodes stored in a relational database, using a jdbc driver; a LuceneBack-
ingStore interfaces with a Lucene index. The JDBCBackingStore currently does not
support full-text queries, since full-text search is not a standard feature of relational
databases.

A query node is produced by requesting a node of the appropriate type (stored as a
constant in the SearchNodeBackingStore interface) from the backing store. The query
phrase is attached to the query node; when fetching the neighbours of the query node,
the query is automatically executed, and edges to matching documents are added.

Applications typically do not use backing stores directly; instead, a SearchNodeFac-
tory is created, which initializes the backing stores and registers itself to the SearchN-
odeFactoryManager. The factory manager provides access to the factory for a given
type. A factory also includes a cache for nodes which have already been fetched from
the backing store.

8.3.3 Search

The SocialSearch class provides a common interface for social search algorithms (fig-
ure 8.3). The class returns a SearchHits object, which contains the nodes matched by
the search, in order of their score. The hits can be filtered by a field value, and can be
restricted to a set of nodes.

Two algorithms are implemented, one based on PageRank (described in section 6.3),
and one based on spreading activation search (section 6.4).

The PageRank class implements PageRank search; it needs to be supplied with a bias
value, the type identifier of the person nodes, and the graph for which PageRank values
should be computed. PageRank computation is perfomed when the class is initialized.
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# getTypes()

LuceneBackingStore

BackingStoreMultiplexer

SearchNodeCache

SearchNodeFactoryManager

SearchNodeFactory

+ SearchNodeFactory(config)

SearchNodeBackingStore

DEFAULTWEIGHT: double

QUERYKEYWORD: String

+ fetch(type, id)
+ fetchNeighbours(node)

LuceneQueryFactory

LuceneLinkBackingStore

LuceneTypeBackingStore

JDBCLinkBackingStore

JDBCTypeBackingStore

JDBCBackingStore

«inner class»

# openIndex(config)

# searcher: IndexSearcher

«abstract class»

QUERYTYPE: String

# reader: IndexReader

«inner class»

# connection: Connection

+ JDBCBackingStore(config)
# configDatabase(config)

# types: HashMap

«inner class»

«inner class»

# setTypes(types)

+ listTypes()
+ listIds(type)

# analyzer: Analyzer

+ addFactory(type,factory)

+ fetchWeight(from, to)

«interface»

+ getFactory(type)

«inner class»

+ LuceneBackingStore(config)

Figure 8.2: Class diagram of storage architecture
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returns
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+ search(node)
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SearchHits

# nodes: List
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+ Constant(amount)
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+ addConstraint(constraint)

«abstract inner class»
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MaxIterations
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Decay

Figure 8.3: Class diagram of search architecture
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The SpreadingSearch implements spreading activation search. Adjustments, con-
straints and termination checks are implemented as inner classes; they are executed
in the order in which they are added to the SpreadingSearch object. They may be
activated in specific iterations only.

An adjustment changes the activation value for a particular node; it is applied to the
output energy, the input energy, or the activation energy of a node, depending on the
stage to which it is added. Several adjustments may be active in one stage and are
applied in the order in which they were added to the SpreadingSearch object.

A constraint determines whether activation spreads via an edge during the spreading
stage. Constraints are also taken into account during pre- and post-adjustment, for
example when determining the outgoing edges for equal distribution spreading.

8.3.4 Indexing

Indexing is separated from the storage and retrieval architecture; it is implemented in
utility classes which convert from the source representation to a Lucene index.

For the mailing list archive, the source representation is a set of files which contain
one email each, in rfc 822 format. Indexing of emails is a two-pass process, because the
Lucene index structure does not support updating individual fields of a document once
it has been written to the index.

In the first pass, messages are read from the source files, using the JavaMail api, and
are added to the index. An integer identifier is assigned to each message. For each newly
encountered email address, a person record is added to the index. The result of the first
pass is a full-text index of the email messages, which lacks the social network between
authors as well as references between messages.

In the second pass, the index from the first pass is used to resolve references between
messages. A new index index is written, containing all the information in the first-pass
index, with references added. The social network of authors is extracted, based on how
often an author replied to messages by another. This information is also added to the
second-pass index.

In the case of the sigir corpus, detailed information about the documents and their
authors is already available in a relational database. The documents are available elec-
tronically in pdf format and have been converted to plain text. The indexer reads
meta-information from the database and and adds it to the index; the document text is
read from the converted pdf files.

8.3.5 Evaluation

Evaluation is performed by two classes, one performing evaluation of the baseline method
and one performing evaluation of social search techniques; they are derived from a
common superclass (see figure 8.4.) A known-item retrieval task consists of a dataset, a
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KnownItemRetrieval

+ KnownItemRetrieval(config)

KnownItemRetrievalSocial

KnownItemQuery

+ KnownItemQuery(config)

KnownItemRetrievalLucene

+ run()

«inner class»

+ doc: Document

+ evaluate(query)
+ query: Query

+ getDocument(config)

# experiments: List

Figure 8.4: Class diagram for the evaluation classes

retrieval method, and a number of known items. A known item consists of the desired
document and the associated query terms. The evaluation classes read a description of
the dataset, the retrieval method and the known items from a configuration file, execute
the queries and report the rank at which the desired document is found. Average rank
and inverse average inverse rank are also reported; their calculation is performed using
interval arithmetic.

The format of the configuration files is described in detail in section 8.4.

8.4 Configuration Files

All components of the prototype are configured using xml files. The root element of
the configuration files is the <experiments> tag. Known items are described by the
<experiment> tag; a known item consists of a query in the <query> tag; the desired
document is describes by the <item> tag. A document is identified by one or multiple
<id> tags, which contain a field attribute containing the search field, and a value
attribute containing the field value for the desired document:

64 <experiments >
65 <experiment >
66 <query>+crease +patterns </query >
67 <item>
68 <id field="message -id"
69 value="&lt;BAY7 -F825UhRSYSS5Eq0005cb53@hotmail.com&gt;"/>
70 </item>
71 </experiment >

The parameters of the retrieval method are described by the <searchparams> tag:

73 <searchparams >
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Adjustments, constraints and termination checks for spreading activation search are de-
fined using the corresponding tags <adjustment>, <constraint> and <terminationcheck>.
The type attribute contains the type; in general, the type corresponds to the name of
the implementing class in figure 8.3. The from and to tags determine in which iteration
the class is active. For adjustments, the stage attribute determines the stage in which
the adjustment is applied:

74 <adjustment stage="activation"
75 type="Decay"
76 value="0.1" />
77 <constraint type="DistanceConstraint" value="2" />
78 <terminationcheck type="MaxIterations" value="4" />
79 <adjustment stage="activation"
80 type="Decay"
81 value="0.0"
82 from="0"
83 to="0" />
84 <constraint type="TypeConstraint"
85 fromtype="person"
86 totype="person"
87 from="2"
88 to="2" />

Parameters for PageRank search are configured using the <pagerank> tag; it has two
attributes: type holds the type string of the person nodes, and bias attribute contains
the bias for PageRank computation:

89 <pagerank type="person" bias="0.3" />
90 </searchparams >

The dataset is configured using the <backingstore> tag; its attribute type is either
"lucene" for a dataset contained in a Lucene index, or "db" for a dataset in a jdbc
compliant database. The <directory> tag contains the directory where the Lucene
index resides; the <analyzer> tag contains the class name of the analyzer to use for
parsing query strings:

91 <backingstore type="lucene">
92 <directory >
93 data/origami -l/indexplus/
94 </directory >
95 <analyzer >
96 org.apache.lucene.analysis.MessageAnalyzer
97 </analyzer >

The <type> tags define node types contained in the dataset; the attribute name contains
the type string, whereas the attribute keyword contains the keyword used to identify
nodes of this type in the dataset. <field> tags describe fields which contain additional
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information about the node. <link> tags describe links to other nodes; the target at-
tribute contains the type of the target node, and the field tag holds the field containing
the id of the target node:

98 <type name="person" keyword="person">
99 <field>address </field>

100 <link target="message" field="message" />
101 <link target="person" field="followuplink" />
102 </type>
103 <type name="message" keyword="message">
104 <field>from</field>
105 <field>subject </field>
106 <field>date</field>
107 <field>filename </field >
108 <link target="person" field="fromlink" />
109 </type>

The <query> tag describes the fields which are searched when executing full-text queries:

110 <query maxhits="5000">
111 <field>text</field>
112 </query>
113 </backingstore >
114 </experiments >

The following dtd describes the format of the configuration files in a concise manner:

1 <?xml version="1.0" encoding="UTF -8"?>
2 <!DOCTYPE experiments [
3 <!ELEMENT adjustment EMPTY>
4 <!ATTLIST adjustment
5 from NMTOKEN #IMPLIED
6 stage NMTOKEN #REQUIRED
7 to NMTOKEN #IMPLIED
8 type NMTOKEN #REQUIRED
9 value NMTOKEN #IMPLIED

10 >
11 <!ELEMENT analyzer (# PCDATA)>
12 <!ELEMENT backingstore
13 ((( directory ,analyzer )| database),type+,query)>
14 <!ATTLIST backingstore type (lucene|db) #REQUIRED >
15 <!ELEMENT constraint EMPTY>
16 <!ATTLIST constraint
17 from NMTOKEN #IMPLIED
18 fromtype NMTOKEN #IMPLIED
19 to NMTOKEN #IMPLIED
20 totype NMTOKEN #IMPLIED
21 type NMTOKEN #REQUIRED
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22 value NMTOKEN #IMPLIED
23 >
24 <!ELEMENT directory (# PCDATA)>
25 <!ELEMENT database (connectstring ,driver)>
26 <!ELEMENT connectstring (# PCDATA)>
27 <!ELEMENT driver (# PCDATA)>
28 <!ELEMENT experiment (query ,item)>
29 <!ELEMENT experiments
30 (experiment+,searchparams ,backingstore)>
31 <!ELEMENT field (# PCDATA)>
32 <!ATTLIST field EMPTY>
33 <!ELEMENT id EMPTY>
34 <!ATTLIST id
35 field CDATA #REQUIRED
36 value CDATA #REQUIRED
37 >
38 <!ELEMENT item (id+)>
39 <!ELEMENT link EMPTY>
40 <!ATTLIST link
41 field NMTOKEN #REQUIRED
42 target NMTOKEN #REQUIRED
43 >
44 <!ELEMENT pagerank EMPTY >
45 <!ATTLIST pagerank
46 bias NMTOKEN #REQUIRED
47 type NMTOKEN #REQUIRED
48 >
49 <!ELEMENT query (# PCDATA|field )*>
50 <!ATTLIST query maxhits NMTOKEN #IMPLIED >
51 <!ELEMENT searchparams
52 (adjustment|constraint|pagerank|terminationcheck )*>
53 <!ELEMENT terminationcheck EMPTY>
54 <!ATTLIST terminationcheck
55 type NMTOKEN #REQUIRED
56 value NMTOKEN #IMPLIED
57 >
58 <!ELEMENT type (field+,link+)>
59 <!ATTLIST type
60 keyword NMTOKEN #REQUIRED
61 name NMTOKEN #REQUIRED
62 >
63 ]>
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8.5 Summary

The prototype system implements the model and the techniques described in sections 5
and 6. It is implemented in the Java programming language, using the j2se 1.4.2 sdk.
Open-source componets are employed for parts of the prototype.

The prototype is implemented as a batch retrieval system, using a modular structure
which allows for rapid implementation of different retrieval methods. The architecture
supports storing the dataset in two formats: In a relational database with a jdbc driver,
or in a Lucene index.

Configuration of the system is performed using xml files. The configuration files
contain a complete description of a known-item retrieval task, including the known-
item queries, the desired documents, the parameters of the retrieval methods, and a
description of the dataset.

84



Chapter 9

Conclusion

In this thesis, we research how to integrate social networks in the information retrieval
process and whether this integration leads to a performance improvement.

We examine the process of information retrieval and production and how social in-
teraction is present in these activities. In particular, several applications of the internet
are identified as social media, for example wikis, blogs, or mailing lists.

We propose a model for social information retrieval, which integrates the domains
of social network analysis and information retrieval. Meaningful associations become
apparent which are not part of the traditional models. We define social information
retrieval as a retrieval process which includes a well-defined subset of the constituents
of the social ir model.

Two techniques are described which implement social ir. Both techniques are inspired
by previous attempts at graph-based information retrieval: The PageRank algorithm,
which is widely used for link analysis in the world wide web, and spreading activation
search, a search technique for semantic and associative networks. The algorithms differ
in that PageRank is a technique which uses global properties of the graph, whereas
spreading activation search uses local links.

We evaluate the techniques in a known-item retrieval scenario. We compare the char-
acteristics of our corpora with the web graph and with previously examined social net-
works. The similarities between social networks and the web graph in particular motivate
the application of web retrieval techniques to social information retrieval.

We conclude that social network analysis is an important tool for information retrieval.
The main argument supporting this conclusion is the importance of social interaction
for information retrieval and production.

9.1 Impact

We apply graph-based techniques to social networks, using them outside their traditional
domains within information retrieval, namely web retrieval and retrieval on semantic
networks. We thereby extend the state of the art in graph-based retrieval techniques.

We acknowledge recent developments in statistical network analysis and theory of
random graphs and apply them in the context of information retrieval. We hope that
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further developments in the young field of statistical network analysis will continue to
cross-pollinate information retrieval.

There is currently an indisputable interest in ‘social software’, exemplified by the
popularity of blogs and wikis, ‘social tagging’ systems, and ‘social bookmarking’. The
number of mentions of Wikipedia, a project founded on social software principles, in
reputable publications like the New York Times or the Guardian alone is witness to this
trend.

The commonly cited benefits of social software, for example improved communication
among group members or emergence of communities, is important but intangible. We
aim to derive tangible benefits from the application of social networks, namely improved
retrieval performance – by providing retrieval techniques which are tailored to the emerg-
ing field of social software. We believe that these tangible benefits will accelerate the
adoption of social software.

9.2 Limitations

The main limitation of social ir follows from its domain model: it is only applicable
where a social network is present in the domain, or can be derived. Furthermore, the
quality of the social network is crucial: We see in section 7.3.2 that a poorly formed
social network can lead to a failure of social retrieval methods.

Limitations of other graph-based retrieval methods also apply to social information
retrieval. Commonly cited limitations of PageRank are that its benefits are greatest for
underspecified queries with many relevant results; for spreading activation search, the
structure of the network is of crucial importance.

The position of an author in the social network may be misleading as regards his
authority. In particular, we see that social retrieval techniques are good at identifying
multipliers, but fail to identify innovators.

9.3 Future Work

Evaluation of the prototype system was performed using non-standardized corpora and
evaluation scenarios. For comparing the prototype system with current and future in-
formation retrieval systems, standardized corpora and evaluation scenarios must be con-
structed. Standardized scenarios also permit to tune the system for a particular retrieval
task.

While the current prototype implementation as a batch retrieval system satisfies the
requirements for the chosen evaluation scenarios, the implementation of an interactive
prototype is indispensable for further evaluation. In particular, user studies need to be
performed to find out how users react to the presence of social network information in a
retrieval application. Visualization of the social network needs to be researched as part
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of the result presentation of a social ir system.
The techniques and evaluation scenarios described in this thesis use only a subset of

the possible relations present in the social ir domain model. It will be instructive to
apply social retrieval techniques to domains exhibiting different subsets of the domain
model.

When choosing algorithms for social ir, we limit the evaluation to two popular algo-
rithms for graph-based retrieval. Other algorithms need to be examined to determine
their suitability for social ir. Topic-sensitive PageRank (Haveliwala, 2002) in particu-
lar is a promising candidate, as it allows for a social authority measure tailored to a
community or a single individual.
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