A Kernel between Sets of Vectors Sebastian Marius Kirsch skirsch@moebius.inka.de ### Overview - 1. Applications - 2. Related work - 3. Description of implemented approach - 4. Evaluation, experiments and results - 5. Conclusion Back ## Application: Drug Screening - determine drug activity against certain diseases (AIDS, cancer) - drug data (molecule structure, 3d data, activity) available from National Cancer Institute - construct kernel function on drug data for use in SVM Back #### Related work - graph kernels (cyclic pattern) for drug screening (Tamás Horváth and Thomas Gärtner, FHI AIS) - set kernels between vectors using probability distributions and Bhattacharyya's affinity (Risi Kondor and Tony Jebara, Columbia Univ.) - set kernels using kernel principal angles (Lior Wolf and Amnon Shashua, Hebrew Univ. Jerusalem) ### **Approach** - combine standard methods to produce a functioning kernel - components: - kernel PCA - summation and inner products between vectors. - vertex colouring (increases number of labels on evaluation data from 63 to 1897.) #### Kernel PCA - principal component analysis applied in feature space - implemented as eigenvalue decomposition of kernel matrix - at most as many eigenvectors with eigenvalue $\neq 0$ as data points Back ## Preprocessing of instances Input data: $x = \{x_1, \dots, x_n\}, x_i \in \mathbb{R}^m$, labels $l_1, \dots, l_n \in L(x)$ - 1. choose kernel function k between vectors (eg. RBF kernel) - 2. compute kernel matrix K with $(K(x))_{ij} = k(x_i, x_j)$ - 3. compute kernel principal component vectors - 4. project data points onto principal components in feature space \Rightarrow transformed instances $\tilde{\mathbf{x}} = {\{\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_n\}}$ - 5. sum over component vectors with the same label $$\varphi_l(x) = abs\left(\sum_{\substack{1 \leqslant i \leqslant n \\ l_i = l}} \mathbf{\tilde{x}}_i\right)$$ #### The kernel function • Kernel between two instances x, x': $$k_{\mathsf{set}}(x,x') = \sum_{\mathfrak{l} \in L(x) \cap L(x')} \varphi_{\mathfrak{l}}(x)^{\top} \varphi_{\mathfrak{l}}(x')$$ - is a positive-definite kernel function, since only scalar products between vectors are used. - May choose two kernel functions as modifier: for kernel PCA and for k_{set} . (Best results with RBF kernel for kernel PCA and linear kernel for k_{set} .) Back #### **Evaluation** - AIDS screening data from the National Cancer Institute (March 2002) - 3d structure data in SDF format - created algorithmically using CORINA (University of Nürnberg-Erlangen) - may be wrong (created using heuristics) - no data on stereochemistry available - 42687 compounds tested - three classes: - inactive (41184 compounds) - moderately active (1081 compounds) - active (422 compounds) ## **Experiments** Influence of vertex colouring on the area under ROC curve (data: CA vs. CM, five-fold crossvalidation.) 44 Back # Experiments II Comparison of the pointSet kernel on 3d data vs. adjacency lists (data: CA vs. CM, five-fold crossvalidation.) Back ## Results | problem | cost | point set
kernels on
3D data | point set
kernels on
adj. matrix | walk-based
kernels | cyclic pattern
kernels | |--------------|-------|------------------------------------|--|------------------------------------|---------------------------| | CA vs. CM | 1.0 | 0.774 ± 0.014 | 0.796 ± 0.010 | 0.818 ± 0.024 | 0.813 ± 0.014 | | CA vs. CM | 2.5 | 0.767 ± 0.022 | 0.798 ± 0.022 | $\textbf{0.825} \pm \textbf{0.32}$ | 0.827 ± 0.013 | | CA vs. CM+CI | 1.0 | 0.859 ± 0.023 | 0.858 ± 0.018 | 0.926 ± 0.015 | 0.908 ± 0.024 | | CA vs. CM+CI | 100.0 | 0.840 ± 0.023 | 0.882 ± 0.022 | 0.928 ± 0.013 | 0.921 ± 0.026 | | CA+CM vs. CI | 1.0 | 0.735 ± 0.017 | 0.732 ± 0.013 | 0.815 ± 0.015 | 0.775 ± 0.017 | | CA+CM vs. CI | 35.0 | _ | 0.751 ± 0.013 | 0.799 ± 0.011 | 0.801 ± 0.017 | | CA vs. CI | 1.0 | 0.876 ± 0.026 | 0.873 ± 0.033 | 0.942 ± 0.015 | 0.919 ± 0.011 | | CA vs. CI | 100.0 | 0.851 ± 0.030 | $\textbf{0.886} \pm \textbf{0.027}$ | 0.944 ± 0.015 | 0.929 ± 0.01 | Back #### Conclusion - viable kernel function from standard components - efficient computation after preprocessing - not as good as walk-based kernels/cyclic pattern kernels. - good performance on adjacency lists not part of the design More information in the report on http://www.sebastian-kirsch.org/moebius/docs/praktikum.pdf